
2025

Unlocking peak 
performance with 
load testing
The 10 load metrics every 
DevOps team should track 
in 2025



Atlassian and the State of DevOps Report popularized the Four Critical DevOps Metrics 

or DORA metrics (Deployment frequency, lead time for changes, change failure rate, 

and time to restore service). They are indispensable, but they often ignore what 

happens after code is deployed, when it faces real users at scale. 



Load testing adds that missing diagnostic lens, turning velocity metrics into 

early‑warning indicators rather than lagging statistics.



Continuous delivery has shrunk idea‑to‑prod cycles from months to minutes. Cloud 

elasticity promises "infinite" capacity at a keystroke.



Yet incidents such as retail flash‑sale meltdowns and viral‑launch outages prove that 

speed and scale are orthogonal. Even more insidious are the performance regressions 

that slip through with each new feature deployment: a recommendation engine that 

passes all tests but generates 10x more database queries, an API update that works 

perfectly in staging but creates cascading timeouts under real load, or a minor UI 

change that doubles page response times.



A system optimized for rapid change but blind to its saturation point is one deploy 

away from disaster. However, velocity comes with an invisible tax: performance 

regressions that slip through even the most rigorous functional testing.



Every new feature carries performance DNA that only reveals itself under real user 

load. The recommendation algorithm that works perfectly with test data becomes a 

database killer when processing millions of user preferences. Or the elegant new 

checkout flow that passes all UI tests doubles server response times when real 

shopping carts contain dozens of items.

The 10 load metrics every DevOps team should track in 2025 

02

Why load testing still 
matters in a DevOps world



DevOps teams track deployment frequency, lead time, change failure rate, and mean 

time to recovery with religious precision. Nevertheless these velocity metrics are 

lagging indicators: they tell you how often systems break but not why they fail or how  

to prevent the next outage.



Industry analysis of 10,000+ production incidents reveals that 63% of all customer-

impacting outages stem from performance degradations(1), not functional bugs. The 

gap is hiding in plain sight: teams optimize for how fast they ship, not how their 

systems respond when real users arrive in force.

03

The performance blind spot 
in modern DevOps

Blog article, read full article here -----→

� User churn: 40 % of users abandon a page that takes longer 

than three seconds to load�

� Operational burn: Unplanned performance firefighting can 

consume up to 20 % of engineering capacity�

� Reputational damage: Public post‑mortems erode market 

confidence and brand trust.

Remember: Velocity ≠ resilience

THE COST OF PERFORMANCE BLIND SPOTS

The 10 load metrics every DevOps team should track in 2025 

https://journalwjarr.com/sites/default/files/fulltext_pdf/WJARR-2025-1073.pdf


Load testing 

metrics that matter

#1 | Error ratio 

(HTTP 5xx / unexpected codes)


#3 | TLS handshake-timeout rate


#2 | TCP connect-timeout rate


Error ratio measures the percentage of 
requests your application attempts to handle 
but fails to complete successfully. This metric 
serves as your canary in the coal mine for 
deployment quality, revealing bugs, 
misconfigured feature flags, or broken 
connections to downstream services 
immediately after code changes go live. 


Unlike functional tests that validate success 
paths, error ratio reflects how the system 
behaves when stressed, including how it fails. 
Teams should slice error data by endpoint and 
deployment version to quickly identify which 
specific code changes introduced problems. A 
sudden spike in error ratio, especially after a 
deployment, typically indicates application-level 
issues rather than infrastructure problems.

TLS handshake-timeout rate measures the 
percentage of SSL/TLS negotiations that either 
fail or exceed acceptable time thresholds. This 
metric becomes critical as organizations 
increase HTTPS adoption and implement 
stronger encryption standards. Rising TLS 
timeouts often indicate cipher suite 
mismatches, expired certificate chains, or CPU-
intensive cryptographic operations 
overwhelming your servers.



The metric becomes particularly important 
during high-concurrency testing, where the 
computational overhead of establishing many 
simultaneous encrypted connections can 
create unexpected bottlenecks. Teams should 
also monitor TLS renegotiation patterns, 
especially with HTTP/2 implementations that 
can trigger additional handshake overhead.

TCP connect-timeout rate tracks the 
percentage of network connections that fail to 
complete the standard three-way handshake 
within your specified timeout period. This 
metric is crucial because it reveals network-
level saturation and load balancer capacity 
issues that won't appear in application logs.



When TCP timeouts increase while server CPU 
usage remains low, the bottleneck exists in your 
network infrastructure, not your application 
code. This client-side visibility is invaluable for 
diagnosing problems that server-side 
monitoring completely misses, such as firewall 
misconfigurations, network packet loss, or 
overwhelmed load balancers that drop 
incoming connections.



These are critical client-side metrics that reveal 
infrastructure issues your APM won’t catch.

Modern systems demand specialized performance signals that expose nuanced 
bottlenecks across your entire stack. The following 10 core metrics provide 

comprehensive visibility into system behavior under load, exposing real 
bottlenecks, instability, and failure conditions that only emerge during high-

traffic scenarios:

04

The 10 load metrics every DevOps team should track in 2025 



05

#4 | Average response time

#5 | Response-time standard deviation

#6 | Response-time percentiles 

(P95/P99)

#7 | Complete business-process 
duration

Average response time provides the mean 
latency across all requests during your load test 
period. While this metric offers useful trend 
analysis over days or weeks to detect gradual 
performance regressions, it should never be 
used for service level objectives or alerting 
thresholds.



Averages inherently hide the tail latency that 
actually impacts user experience. A system 
with 99% of requests completing in 50ms and 
1% taking 10 seconds will show a misleadingly 
good average of 150ms. Use average response 
time exclusively for identifying slow drift 
patterns in system performance, but always 
pair it with percentile-based metrics for 
accurate performance assessment and 
operational decision-making.

Response-time standard deviation quantifies 
the variability in your system's latency, 
revealing performance inconsistency that 
impacts user experience predictability. High 
standard deviation indicates system jitter and 
instability, often caused by garbage collection 
pauses, resource contention, or inconsistent 
database query performance.



This metric becomes particularly valuable when 
standard deviation increases dramatically while 
mean response time remains stable, suggesting 
that a subset of requests experiences severe 
delays while the majority performs normally. 
Teams should investigate spikes in standard 
deviation alongside percentile metrics to 
identify whether performance problems affect 
specific user cohorts, geographic regions, or 
request types.Response-time percentiles reveal the latency 

experienced by your slowest users, providing 
the most accurate picture of real-world 
performance impact. P95 represents the 
experience of your frustrated users, while P99 
captures the performance that drives angry 
social media complaints and customer service 
calls.



Unlike averages, percentiles expose the tail 
latency that directly correlates with user 
abandonment and revenue loss. When P99 
response times double while mean response 
time stays flat, you've identified a performance 
regression affecting a small but vocal user 
segment. Ensure your load testing tools use 
mathematically accurate percentile 
calculations, preferably HDR histograms, to 
avoid measurement errors that can hide critical 
performance issues.

Complete business-process duration measures 
end-to-end transaction time for critical user 
journeys like account registration, product 
purchase, or document upload. This metric 
captures the true customer friction that 
individual API response times miss, revealing 
how multiple service calls, database queries, 
and third-party integrations compound to 
create the actual user experience.



A checkout process might show excellent 
individual API performance while the complete 
purchase journey suffers from cumulative 
delays across multiple steps. Teams should 
script entire business workflows during load 
testing rather than focusing solely on individual 
endpoints, ensuring performance optimization 
efforts target the user journeys that most 
directly impact business outcomes.

The 10 load metrics every DevOps team should track in 2025 



06

#8 | CPU usage (load generators)

#9 | Heap memory usage 

(load generators)

#10 | TCP connection details

CPU usage tracks how much processing power 
is consumed by your load generators during a 
test. It ensures that your test infrastructure is 
capable of generating the intended load without 
becoming a bottleneck itself.



If load generators approach 100% CPU 
utilization, they may fail to maintain target user 
injection rates or introduce artificial latency, 
skewing test results. Monitoring this metric 
helps validate the integrity of your test and 
guarantees that any observed performance 
issues originate from the system under test, not 
from a bottleneck in the test infrastructure itself.

Heap memory usage tracks how much memory 
is consumed by your load generators during a 
test. Sustained high usage can lead to 
excessive garbage collection, thread blocking, 
and inaccurate simulation behavior — 
especially under long or high-concurrency 
scenarios.



If heap usage on a load generator steadily 
increases or spikes above 85%, it may indicate 
internal inefficiencies (e.g., excessive object 
allocation or retained data). This can introduce 
artificial latency, cause injection rate drops, or 
even crash the generator mid-test. Monitoring 
this metric ensures the test infrastructure 
remains stable and does not skew performance 
results, especially when simulating large user 
loads or complex test scenarios.



For application-side heap usage, this metric 
must be tracked via your APM or observability 
platform.

TCP connection details encompass the health 
of socket pools, connection reuse patterns, and 
network-level failures including connection 
resets and timeouts. This metric reveals 
connection pool exhaustion, keep-alive 
configuration problems, and network attacks 
like SYN floods that can overwhelm application 
infrastructure.



When active connection counts flat-line at 
specific thresholds, you've likely hit connection 
pool limits rather than application capacity 
constraints. Teams should track connection 
metrics per source IP to identify potential 
distributed denial-of-service attacks and 
monitor connection reset (RST) patterns that 
indicate network instability or firewall 
interference with long-running connections.

The 10 load metrics every DevOps team should track in 2025 



07

Error ratio

TCP connect-timeout 
rate

TLS handshake-
timeout rate

Average response 
time

Response-time 
standard deviation

Share of requests the 
app tried but failed to 

fulfill

Percentage of sockets 
that never finish the 3-

way handshake

Percentage of SSL 
sessions that exceed 

threshold or fail

Mean latency across 
all requests

Latency variability 

and consistency

Bugs, bad feature 
flags, broken 

downstream services

Load-balancer or 
network saturation

Cipher mismatch, 
expired cert, CPU-
heavy handshakes

Slow drift over days 
indicates creeping 

regression

Jitter and system 
instability

Spike after

deployment

Rises while 

server CPU is low

Climb at high 
concurrency

Use for trend 

analysis only

Standard deviation 
balloons while mean 

stays flat

Slice by endpoint + 
version to find the 

guilty commit

Only visible from the 
client side

Track renegotiations 
on HTTP/2

Never use for SLOs—
hides tail latency

Pair with P95/P99 to 
locate bad cohorts

METRICS What it measures What it tells you When to worry Tips for success

The 10 load metrics every DevOps team should track in 2025 



08

METRICS What it measures What it tells you When to worry Tips for success

The 10 load metrics every DevOps team should track in 2025 

Response-time 
percentiles

Complete business-
process duration

CPU usage

Heap memory usage

TCP connection details

Tail latency that real 
users actually 

experience

End-to-end journey 
time for critical 

workflows

CPU utilization of load 
generators during a test

JVM heap memory 
consumed by load 

generators during a test

Health of socket pools 
and keep-alive 
connections

Small slice of very 

slow requests

True customer friction 
across entire user flows

Whether the test 
infrastructure can 

sustain the desired load 
without introducing 

bottlenecks or artificial 
latency

Detect memory 
pressure, risking GC 

pauses, thread blocking, 
or generator instability

Exhausted pools and 
connection reset storms

P99 doubles but mean 
remains OK

Slower checkout but 
fast individual APIs

Sustained CPU usage 
above 80%, especially 
when paired with rising 

response time 
percentiles (e.g., P95)

Heap usage steadily 
increases or spikes 

above 85%, especially in 
long or high-

concurrency tests

Open-connection count 
flat-lines at pool size

Verify your tool's 
percentile math 

accuracy

Script the whole flow, 
not just endpoints

Always validate that 
load generators aren’t 
CPU-saturated before 
attributing slowdowns 
to the system under 

test

Monitor to prevent 
injection slowdowns or 

mid-test crashes

Track per source IP to 
catch SYN floods



Organizations no longer see load testing as merely preventing outages. 



Modern DevOps requires both velocity and resilience. By implementing these 10 metrics 

with Gatling Enterprise, your organization transforms load testing from a reactive 

bottleneck into a competitive advantage that enables faster, more confident, and more 

profitable software delivery.



It's now a competitive differentiator enabling�

� Accelerated testing cycles: TRAY reduced load testing time from 3 days of manual 

work to hours of automated analysis, while TUI implemented automated CI/CD 

pipeline integration for continuous performance validatio�

� Infrastructure optimization: JioStar demonstrated efficient scaling capacity, 

supporting 30M concurrent users during Indian Premier League matches and scaling 

from 15M to 30M users within 90 seconds during critical live event�

� Superior user experience: Performance improvements directly impact user 

satisfaction - TUI achieved 50% mean performance improvement with response 

times improving from 1.5s to 0.7s, while TRAY reduced response times by up to 90% 

with 200% improvement in API response performanc�

� Engineering efficiency: Teams report significant time savings in performance 

validation - TRAY's engineering team can now complete performance data analysis 

in hours rather than the previous 3-day manual process, enabling faster 

development cycles

10 metrics every DevOps team should track 

09

Load testing is your 
competitive advantage



Gatling is the leading solution for modern load 
testing, enabling developers and organizations to 
deliver fast, reliable applications at scale. With its 
powerful open-source and enterprise platforms, 
Gatling empowers teams to test APIs, 
microservices, and web apps in real-world 
conditions. Trusted by thousands of companies 
worldwide, Gatling is the performance backbone 
for development, QA, and DevOps teams building 
the next generation of software.

gatling.io


