e DATASHEET. [l

A practical guide for engineering lea
.- - faster, more resilient systems. = ==

What is shift-left
in performance testing?

Modern software systems evolve fast, and break even faster.

Performance issues that used to appear only during peak traffic now show up in everyday interactions across
distributed microservices, Al-powered workloads, and globally scaled architectures.

Shift-left performance testing means moving performance and load validation earlier in the software delivery
lifecycle:

» from late-stage QA to development and integration,
« from “big-bang” pre-release campaigns to continuous, automated checks,
» from a specialized performance team to shared ownership across engineering.

Instead of treating performance testing as a final gate, shift-left makes it a built-in development
practice: developers, QA, and SRE continuously validate response times, error rates, and
scalability as the system evolves.

% Plan /'—‘«:f Deploy

Code <{>
Cl CD
{3}@ Operate
Build gm
Test @ Monitor

Core principles of shift-left performance testing
Early and continuous testing Realistic load and data Service-level performance testing
Integrate lightweight Gatling tests Model true user behavior and peak In microservice architectures, you
in CI/CD to hvalidate critical functions usage to make early test results must test components independently
on every build. meaningful. before integrating them together.

Clear SLAs and thresholds Shared visibility and collaboration
Teams need unambiguous thresholds like Performance is not a department. It's a culture.
p95 < 350 ms; error rate < 0.1%; CPU stays Shift-left works only when developers, QA, and SRE

< 80%; CI/CD enforces these automatically. see the same performance signals.

What happens when teams test, but don't
shift left?

Even teams that “do performance testing” face recurring problems when
tests occur too late:

El Late discovery of bottlenecks

Issues emerge when architecture is fixed, leaving little room to

correct design flaws. T High cost of defects
Common issues: A slow endpoint found in development takes hours to fix;
. . . . found in production, it triggers incidents, rollbacks, and
« Performance fixes require redesign or deep refactoring, not customer impact.

simple code changes

. :)) Common issues:
« Incidents only surface under full system integration, making root- -

cause analysis slow « Limited scalability caused by thread-per-user architectures

« Test data, dependency mocks, or environments no longer reflect « CPU exhaustion before real concurrency is reached
actual traffic or usage patterns

. i X « Unpredictable throughput under bursts or TLS-heavy
« Performance regressions accumulate unnoticed across multiple traffic

services
« Inability to reach peak-load scenarios without load
generator failures

® Reliance on specialized teams

Performance testing often sits with a small expert group, creating
bottlenecks and fragmented visibility. 9 Infrequent, high-stakes test cycles

Commonissues: “Big bang” tests before release are hard to coordinate and rarely

] reflect the latest changes.
« Developers wait days or weeks for results from a performance

team Common issues:

* Scenarios become outdated because experts can't keep up with « Difficulty simulating real concurrency due to blocking or thread-
product pace per-user models

o Knowledge silos lead to inconsistent testing patterns across « Distributed setups that break under CPU pressure, network
services constraints, or config drift

rdination required between dev, QA, SRE, and perf « Load generators require constant tuning and manual scaling

Tests run only before releases, leaving long intervals where
regressions accumulate

and automation workflows,

Why Gatling enables shift-left?

> Shift-left requires tools built for developers, automation, and modern
architectures. Gatling is designed around these needs.

N,

Developer-First
Test-as-Code

Developers write and maintain
performance tests directly in code,
stored in Git, reviewed in pull requests,
and easily refactored as services
evolve.

%

Configuration-as-Code

Environments, load profiles, regions,
and SLAs are all declared as code for
reproducibility, auditability, and reliable
automation.

(]

Al
Aligned with modern
architecture complexity

Gatling supports real-world protocols
and patterns: HTTP, APlIs,
microservices, SSE, WebSockets,
gRPC, and more.

It suits hybrid, cloud-native, and
containerized environments and
adapts to any security or network
context.

«3»
Cl/CD-native execution

Gatling integrates seamlessly with
GitHub Actions, GitLab CI, Jenkins,
Azure DevOps, and more.
Performance thresholds can break the
build when SLAs are not met—just like
unit tests.

S

From local tests to global scale

Run lightweight tests locally for rapid
feedback, automatically run tests on
feature branches through CI/CD, and
scale to distributed, multi-region load
testing using Gatling Enterprise
Edition, without rewriting scenarios.

Gatling brings performance into the same workflows developers use every day
—making shift-left not just possible, but practical.

LCuatling

Key capabilities for shift-left

Test-as-Code for developer ownership

Gatling scenarios are written directly in code—

JavaScript, TypeScript, Scala, or Java—and stored in Git
- . TS 4
like any other part of the application.

const checkoutFlow = group("Checkout Journey").on(
http("Home Page").get("/"),
pause(1),

This model lets developers review, refactor, and evolve ;
performance tests alongside the services they validate; 3

i i i 4 http("Add to Cart").post("/cart").body({ itemId: "12345",
the same way as application code, teams gain 5 GuEmEE 1),
repeatability, traceability, and shared ownership from ; PEITEE(),
8
9
4l
1

. . http("Payment").post("/checkout").body({ card: "#kxx-%xkk-
the very first commit. *xkk-4242" })

const scn = scenario("High-Traffic Checkout &
Pavment") .an(checkoutFlow) :

- @

Flexible test design options

Gatling provides several developer-friendly ways to

create performance and API tests early in the lifecycle, .
so teams can validate scalability as soon as an endpoint Irs K
or user flow exists: ToT00 f G
e e o R ecoario
» Test-as-Code in JS, TS, Java, or Scala A (s
» Postman - Gatling import bootstraps API E rasaunContipe fapi-sum
9 .acceptHeader("applicatiof
performance tests from existing collections. n
. . . 2 AppleWebKit/537.36 (KHTHL, 1i
* No-code test builder with one-click export-as-code 55 seforiss 56
for further editing in the IDE. 1/ oesine s
o Gatling Studio records browser journeys into clean, 3 seanartaCScaaleplel R
. . . . // Define injection profile
maintainable Gatling scripts. A senteon infetopnteonss

ArataralelhttnPratannl) -

Fast execution from IDE

Developers can run Gatling tests directly from their IDE
for rapid iteration, or trigger them from the command
line to execute locally or on Gatling Enterprise Edition.

npx gatling enterprise-start --enterprise-simulation="Ecomm website"

This provides fast, actionable feedback during
development and makes performance testing a natural
part of daily coding routines.

Cl/CD-Native Automation and
Performance Gates

a
Gatling integrates seamlessly with GitHub Actions,
GitLab Cl, Jenkins, Azure DevOps, and more: wAML
« Automatic execution on commits, merges, and 1 name: Gatling Enterprise
nightly builds i ;2;: push: { branches: [main] } }
« Performance thresholds and assertions that fail the 4 run:
build when SLAs are not met 3 QULLERLE" [XIED=UEEORE _
6 container: gatlingcorp/enterprise-runner:1
7/ steps:
This turns performance testing into a continuous, 8 - uses: actions/checkout@v4
) . . 9 - run: gatlingEnterpriseStart
automated aspect of your delivery pipeline. 10 S
11 SIMULATION_ID: c47eld9e-24af-41d5-89c2-6be9e4df9a9l
12 GATLING_ENTERPRISE_API_TOKEN: ghp-1234567890abcdef
H 13
Latling by
G

Key capabilities for shift-left

Service-level performance testing for

microservices -
Gatling is perfect for API-level testing, making it ideal for
lidati . . Iv: 1 dimport { simulation, scenario, atOnceUsers }
validating microservices early: 2 from "@gatling.io/core":
3
» Test isolated services directly during development 4 import { http, ws } from "@gatling.io/http";
» Catch latency spikes, timeout risks, or dependency 5 i uflli
))) 6 import { mgtt } from "@gatling.io/mqtt";
issues before integration 7
« Prevent bottlenecks from propagating through 8 import { grpc } from "@gatling.io/grpc";
distributed architectures io

Teams validate each service’s SLAs upstream, not
during late-stage system testing.

Reusable scenarios across local » CI/CD
- Enterprise

Ciatling

A single Gatling simulation works everywhere:
atest simulation runs

» On developers’ machines, :
« Inside Cl pipelines, iz
» And at scale in Gatling Enterprise Edition. B Pctormancs ross Tes-GiLa-1

st-GitHub-Actions

ress-Test-GitHub-Actions

No rewrites or alternate formats — one test evolves
with the codebase and scales with team maturity.

04/11/2025

Real-time feedback and observability
ready results

Sele 5/5,
#10X #9X #8X #7X #6X Response time's 99th percentile ™

With Gatling Enterprise Edition, developers get instant oy | ovos:s
feedback on what they are building, validating
performance as soon as new code is written:

+ Real-time dashboards that show how new code _ 00:03:17
behaves under load ' oy

Run#8: 4223ms ||

 Trend and comparison views that highlight e o AN
regressions across builds and releases 0= : o] T fun#e fomims

o Correlated insights through integrations with
Datadog, Dynatrace and other observability
platforms

Latling 03

Benefits of shift-left testing

Technical
benefits

—

4

Earlier detection
of performance regressions

Running tests during development
surfaces latency issues and
bottlenecks before they spread across
services. Teams fix problems when
context is fresh and changes are still
cheap.

=)
Continuous, automated
validation in CI/CD

Performance tests run automatically
on each build, ensuring every commit
meets defined SLAs. This prevents
late-stage surprises and keeps
delivery predictable.

\J

Higher coverage across
services and APIs

Teams can test microservices, APIs,
and full user flows from the moment
endpoints exist. This expands
performance visibility across the entire
architecture.

i

Improved customer experience
through reliable performance

Stable response times and resilient
services lead to smoother user
journeys. Better performance directly
supports engagement and retention.

Luatling

Business
benefits

9
Reduced release risk
and fewer production incidents

Early validation catches problems long
before they impact users. Releases
become safer, smoother, and more
predictable.

o

Lower cost of fixing
performance issues

Issues resolved in development cost a
fraction of post-release fixes. Teams
avoid expensive firefighting during or
after deployment.

(0
Faster time-to-market with
predictable delivery cycles

Automated performance gates keep
teams moving without sacrificing
quality. This reduces delays and
accelerates feature delivery.

M

Optimized infrastructure
and cloud spend

By identifying inefficient endpoints
early, teams avoid over-provisioning
and reduce waste. Performance
testing becomes a lever for cost
efficiency.

They shifted-left with Gatling

TRENSFPORTATION

How an airline implemented
shift-left testing with
Gatling Enterprise Edition

5M 601ms

0=l LISITS TIME TO FIRST BYTE

SOFTHARRE

0%

How Sophos scaled
backend API performance
testing across teams with
Gatling Enterprise Edition

75-80% 100+

BRCKEND 8PIS COLERE SIMULATIONS

L.atling

By integrating performance testing
early in the SDLC, the airline’s team
identified and addressed
performance issues

With the airline’s continuous implementation of a
comprehensive approach with Gatling Enterprise,
it became the fastest-loading website among
airlines.

Currently, the airline’'s home page peaks with
over 5 million daily visits.

Gatling’s simplicity, scalability, seamless
integration, extensibility, value out-of-the-box
along with its code-driven approach, low
resource footprint, and ability to handle high
loads, made it the ideal choice for us.

Principal Architect
Software Performance Engineer

Sophos adopted Gatling to
democratize performance testing
across decentralized teams

To meet these demands, Sophos adopted
Gatling Enterprise as their performance testing
platform. Load testing became a proactive part
of development, helping teams detect resource-
heavy behavior before it reached production.

Tests were designed not only to verify SLAs but
also to optimize cloud resource consumption,
ensuring services scaled effectively without
over-provisioning.

One reason we chose Gatling was how easy it
is to re-run tests. | also really appreciate having
the results directly available in the Ul; it makes
it easy to share insights.

Hemali Parekh
Senior Manager, Software Development

03

It's a transformation.

With Gatling Enterprise Edition, organizations gain:

e e e

"R "R "R
A developer-first testing model Fully CI/CD-native automation A unified workflow that scales
that integrates seamlessly into to validate performance on smoothly from local tests to
existing workflows every commit and build global, multi-region campaigns

% R

Centralized dashboards and One consistent performance process

reporting that give all teams across developers, QA, SRE, platform

shared performance visibility teams, and leadership

Gatling turns performance testing from a last-minute checkpoint into a continuous, collaborative,
engineering discipline.

Talk to an expert >

https://gatling.io/book-a-demo?utm_source=techpager

