
A practical guide for engineering leaders building
faster, more resilient systems.

2025

Shift-left performance
testing with Gatling

DATASHEET

What is shift-left

in performance testing?

Core principles of shift-left performance testing

Modern software systems evolve fast, and break even faster.

Performance issues that used to appear only during peak traffic now show up in everyday interactions across
distributed microservices, AI-powered workloads, and globally scaled architectures.

Shift-left performance testing means moving performance and load validation earlier in the software delivery
lifecycle:

from late-stage QA to development and integration,

from “big-bang” pre-release campaigns to continuous, automated checks,

from a specialized performance team to shared ownership across engineering.

Instead of treating performance testing as a final gate, shift-left makes it a built-in development
practice: developers, QA, and SRE continuously validate response times, error rates, and
scalability as the system evolves.

Integrate lightweight Gatling tests  
in CI/CD to hvalidate critical functions  
on every build.

Early and continuous testing
Model true user behavior and peak
usage to make early test results
meaningful.

Realistic load and data
In microservice architectures, you
must test components independently
before integrating them together.

Service-level performance testing

Teams need unambiguous thresholds like
p95 < 350 ms; error rate < 0.1%; CPU stays  
< 80%; CI/CD enforces these automatically.

Clear SLAs and thresholds
Performance is not a department. It’s a culture.
Shift-left works only when developers, QA, and SRE
see the same performance signals.

Shared visibility and collaboration

Even teams that “do performance testing” face recurring problems when
tests occur too late:

1

What happens when teams test, but don’t
shift left?

Late discovery of bottlenecks

Reliance on specialized teams

Limited coverage

Infrequent, high-stakes test cycles

Issues emerge when architecture is fixed, leaving little room to
correct design flaws.

Performance fixes require redesign or deep refactoring, not
simple code changes

Incidents only surface under full system integration, making root-
cause analysis slow

Test data, dependency mocks, or environments no longer reflect
actual traffic or usage patterns

Performance regressions accumulate unnoticed across multiple
services 

Common issues:

Performance testing often sits with a small expert group, creating
bottlenecks and fragmented visibility.

Developers wait days or weeks for results from a performance
team

Scenarios become outdated because experts can’t keep up with
product pace

Knowledge silos lead to inconsistent testing patterns across
services

Manual coordination required between dev, QA, SRE, and perf
engineering

Common issues:

Only a fraction of services or endpoints receive meaningful
performance validation.

Teams test only “flagship” flows; long-tail APIs go unvalidated

Metrics pipelines drop samples or smooth peaks when
throughput increases

Mocked dependencies behave too differently from real services

High operational overhead prevents expanding coverage to all
microservices

Common issues:

“Big bang” tests before release are hard to coordinate and rarely
reflect the latest changes.

Difficulty simulating real concurrency due to blocking or thread-
per-user models

Distributed setups that break under CPU pressure, network
constraints, or config drift

Load generators require constant tuning and manual scaling

Tests run only before releases, leaving long intervals where
regressions accumulate

Common issues:

A slow endpoint found in development takes hours to fix;
found in production, it triggers incidents, rollbacks, and
customer impact.

Limited scalability caused by thread-per-user architectures

CPU exhaustion before real concurrency is reached

Unpredictable throughput under bursts or TLS-heavy
traffic

Inability to reach peak-load scenarios without load
generator failures

Common issues:

High cost of defects

Shift-left solves these issues by embedding performance into everyday development and automation workflows,
ensuring teams identify, validate, and resolve bottlenecks long before they reach production.

Shift-left requires tools built for developers, automation, and modern
architectures. Gatling is designed around these needs.

Developer-First

Test-as-Code
Developers write and maintain
performance tests directly in code,
stored in Git, reviewed in pull requests,
and easily refactored as services
evolve.

CI/CD-native execution
Gatling integrates seamlessly with
GitHub Actions, GitLab CI, Jenkins,
Azure DevOps, and more.
Performance thresholds can break the
build when SLAs are not met—just like
unit tests.

Aligned with modern
architecture complexity
Gatling supports real-world protocols
and patterns: HTTP, APIs,
microservices, SSE, WebSockets,
gRPC, and more.

It suits hybrid, cloud-native, and
containerized environments and
adapts to any security or network
context.

Configuration-as-Code
Environments, load profiles, regions,
and SLAs are all declared as code for
reproducibility, auditability, and reliable
automation.

From local tests to global scale
Run lightweight tests locally for rapid
feedback, automatically run tests on
feature branches through CI/CD, and
scale to distributed, multi-region load
testing using Gatling Enterprise
Edition, without rewriting scenarios.

Why Gatling enables shift-left?

Gatling brings performance into the same workflows developers use every day 
—making shift-left not just possible, but practical.

Key capabilities for shift-left

npx gatling enterprise-start --enterprise-simulation="Ecomm website"

YAML

1

2

3

4

5

6

7

8

9

10

11

12

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29

name:
on:
jobs:

 run:

 runs-on:
 container:

 steps:

 - uses:
 - run:
 env:

 SIMULATION_ID:
 GATLING_ENTERPRISE_API_TOKEN:

 Gatling Enterprise

{ push: { branches: [main] } }

 ubuntu-latest

 gatlingcorp/enterprise-runner:1

 actions/checkout@v4

 gatlingEnterpriseStart

 c47e1d9e-24af-41d5-89c2-6be9e4df9a91

 ghp-1234567890abcdef

Test-as-Code for developer ownership

Flexible test design options

Gatling scenarios are written directly in code—
JavaScript, TypeScript, Scala, or Java—and stored in Git
like any other part of the application.

This model lets developers review, refactor, and evolve
performance tests alongside the services they validate;
the same way as application code, teams gain
repeatability, traceability, and shared ownership from
the very first commit.

Gatling provides several developer-friendly ways to
create performance and API tests early in the lifecycle,
so teams can validate scalability as soon as an endpoint
or user flow exists:

Test-as-Code in JS, TS, Java, or Scala

Postman → Gatling import bootstraps API
performance tests from existing collections.

No-code test builder with one-click export-as-code
for further editing in the IDE.

Gatling Studio records browser journeys into clean,
maintainable Gatling scripts.

Fast execution from IDE

CI/CD-Native Automation and
Performance Gates

Developers can run Gatling tests directly from their IDE
for rapid iteration, or trigger them from the command
line to execute locally or on Gatling Enterprise Edition.

This provides fast, actionable feedback during
development and makes performance testing a natural
part of daily coding routines.

Gatling integrates seamlessly with GitHub Actions,
GitLab CI, Jenkins, Azure DevOps, and more:

Automatic execution on commits, merges, and
nightly builds

Performance thresholds and assertions that fail the
build when SLAs are not met

This turns performance testing into a continuous,
automated aspect of your delivery pipeline.

1

2

3

4

5

6

7

8

9

10

11

12

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29

import from

import from

export default

const

 const =

Define

{ , , }
"@gatling.io/core";

{ } " ";

 simulation((setUp) => {

 httpProtocol = http

 .baseUrl(" ")

 .acceptHeader(" ")

 .userAgentHeader(

 "

"

);

 scn
scenario(" ").exec(http(" ").get(" "));

 // injection profile and execute the test

 setUp(scn.injectOpen(constantUsersPerSec(2).during(60)))

 .protocols(httpProtocol);

});

constantUsersPerSec scenario simulation

http @gatling.io/http

 // Define HTTP configuration

 // Define scenario

https://api-ecomm.gatling.io
application/json

Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/134.0.0.0
Safari/537.36

Scenario Session /session

Define your scenario

Get https://ecomm.gatling.io/products/1

Get https://ecomm.gatling.io/products/2

Post https://ecomm.gatling.io/cart

Set up you injection profile

Capacity test
Learn how your application
scales and monitor when
your performances start to
decrease and how

Stress test
Simulate a load peak to
find out if your application
crashesa nd recovers

Soak test
Simulate your regular
production use and monitor
how your application
behaves over times

Record Session

1

2

3

4

5

6

7

8

9

10

11

12

13 
14 
15 
16 
17 

const

const

 checkoutFlow = group().on(

 http().get(),

 pause(1),

 http().post().body({ itemId: ,
quantity: }),

 pause(),

 http().post().body({ card:

 })

const scn = scenario(
).on(checkoutFlow);

 load = scn.injectOpen(

 rampUsersPerSec(0).to(500).during({ amount: 2, unit:
}),

 constantUsersPerSec(500).during({ amount: 5, unit: })

"Checkout Journey"
"Home Page" "/"

"Add to Cart" "/cart" "12345"
1

1
"Payment" "/checkout" "****-****-

****-4242"

"High-Traffic Checkout &
Payment"

"minutes"

"minutes"

Key capabilities for shift-left

Service-level performance testing for
microservices

Reusable scenarios across local → CI/CD
→ Enterprise

Real-time feedback and observability-
ready results

Gatling is perfect for API-level testing, making it ideal for
validating microservices early:

Test isolated services directly during development

Catch latency spikes, timeout risks, or dependency
issues before integration

Prevent bottlenecks from propagating through
distributed architectures

Teams validate each service’s SLAs upstream, not
during late-stage system testing.

A single Gatling simulation works everywhere:

On developers’ machines,

Inside CI pipelines,

And at scale in Gatling Enterprise Edition.

No rewrites or alternate formats — one test evolves
with the codebase and scales with team maturity.

With Gatling Enterprise Edition, developers get instant
feedback on what they are building, validating
performance as soon as new code is written:

Real-time dashboards that show how new code
behaves under load

Trend and comparison views that highlight
regressions across builds and releases

Correlated insights through integrations with
Datadog, Dynatrace and other observability
platforms

03

1

2

3

4

5

6

7

8

9

10

11

12

13 
14 
15 
16 
17 

import
from

import from

import from

import from

 { simulation, scenario, atOnceUsers }
 ;

 { http, ws } ;

 { mqtt } ;

 { grpc } ;

"@gatling.io/core"

"@gatling.io/http"

"@gatling.io/mqtt"

"@gatling.io/grpc"

Benefits of shift-left testing

Earlier detection  
of performance regressions
Running tests during development
surfaces latency issues and
bottlenecks before they spread across
services. Teams fix problems when
context is fresh and changes are still
cheap.

Improved customer experience
through reliable performance
Stable response times and resilient
services lead to smoother user
journeys. Better performance directly
supports engagement and retention.

Higher coverage across
services and APIs
Teams can test microservices, APIs,
and full user flows from the moment
endpoints exist. This expands
performance visibility across the entire
architecture.

Continuous, automated
validation in CI/CD
Performance tests run automatically
on each build, ensuring every commit
meets defined SLAs. This prevents
late-stage surprises and keeps
delivery predictable.

Reduced release risk  
and fewer production incidents
Early validation catches problems long
before they impact users. Releases
become safer, smoother, and more
predictable.

Optimized infrastructure  
and cloud spend
By identifying inefficient endpoints
early, teams avoid over-provisioning
and reduce waste. Performance
testing becomes a lever for cost
efficiency.

Faster time-to-market with
predictable delivery cycles
Automated performance gates keep
teams moving without sacrificing
quality. This reduces delays and
accelerates feature delivery.

Lower cost of fixing
performance issues
Issues resolved in development cost a
fraction of post-release fixes. Teams
avoid expensive firefighting during or
after deployment.

Technical

benefits

Business

benefits

03

Transportation

5M
daily visits

601ms

time to first byte

SOFTWARE

75-80%

backend APIs covered

100+
simulations

How an airline implemented
shift-left testing with
Gatling Enterprise Edition

How Sophos scaled
backend API performance
testing across teams with
Gatling Enterprise Edition

By integrating performance testing
early in the SDLC, the airline’s team
identified and addressed
performance issues

With the airline’s continuous implementation of a
comprehensive approach with Gatling Enterprise,
it became the fastest-loading website among
airlines.

Currently, the airline’s home page peaks with
over 5 million daily visits.

Sophos adopted Gatling to
democratize performance testing
across decentralized teams

To meet these demands, Sophos adopted
Gatling Enterprise as their performance testing
platform. Load testing became a proactive part
of development, helping teams detect resource-
heavy behavior before it reached production.

Tests were designed not only to verify SLAs but
also to optimize cloud resource consumption,
ensuring services scaled effectively without
over-provisioning.

Gatling’s simplicity, scalability, seamless
integration, extensibility, value out-of-the-box
along with its code-driven approach, low
resource footprint, and ability to handle high
loads, made it the ideal choice for us.

One reason we chose Gatling was how easy it
is to re-run tests. I also really appreciate having
the results directly available in the UI; it makes
it easy to share insights.

Principal Architect

Hemali Parekh

They shifted-left with Gatling

Ready to shift-left with confidence?

Gatling Enterprise Edition brings the performance culture your teams
need—long before users ever feel the difference.

Talk to an expert

06

Shift-left is not a single action. 
It’s a transformation.

With Gatling Enterprise Edition, organizations gain:

A developer-first testing model
that integrates seamlessly into
existing workflows

Centralized dashboards and
reporting that give all teams
shared performance visibility

Fully CI/CD-native automation
to validate performance on
every commit and build

A unified workflow that scales
smoothly from local tests to
global, multi-region campaigns

One consistent performance process
across developers, QA, SRE, platform
teams, and leadership

Gatling turns performance testing from a last-minute checkpoint into a continuous, collaborative,
engineering discipline.

https://gatling.io/book-a-demo?utm_source=techpager

