
2025

Build or buy 

your load testing solution
for high-scale, engineering-driven organizations

EBOOK



Spinning up a single test is simple. Running a trustworthy, distributed, pipeline-driven performance 
platform that serves multiple teams is not. Many engineering teams begin with open source to validate 
behavior. But over time, maintaining orchestration, analytics, integrations, and security turns into a 
hidden burden.



Users already expect your application to feel as fast as the best in the world. That raises performance 
testing from a late-stage validation step to a continuous quality engine. Modern architectures—
microservices, edge, hybrid cloud—make real test scenarios distributed by design. And raw metrics 
aren’t enough; teams need actionable insights, gated pipelines, and reliable governance.



When evaluating options, most teams compare:



Open source solutions — low cost, fast ramp, hands-on

Enterprise / managed platforms — built for scale, insight, and team adoption

Many teams start building for control, flexibility, or cost. But the deeper complexity often emerges later:



Distributed orchestration. You become responsible for coordinating generators across locations, 
retry logic, time sync, and result collection,plus handling partial failures gracefully. This is ongoing 
engineering, not a one-off script.



Metrics firehose & analysis. High-cardinality time-series data must be aggregated and retained in a 
way that lets teams do run trends and run-to-run comparisons to spot regressions quickly. Without 
this, people fall back to manual diffing and intuition.  


Integration drift. CI vendors, runners, and APM tools evolve. Keeping pipelines green and alerts 
useful means maintaining plugins, CLIs, and webhooks continually. Every broken connector is lost 
confidence in testing.  


Security & governance. SSO, RBAC, group-to-role mapping, quotas, auditing, and shareable reports 
are mandatory for cross-team adoption. Building and operating them well is non-trivial.  


Opportunity cost. Every hour spent keeping a homegrown platform alive is an hour not spent 
shipping product. Unless performance testing is your product, this is rarely the highest-leverage use 
of your engineers.

BUILD  VS  BUY

Why teams build (and why it’s getting harder)

The risks and costs of building

02

DIY can be great for exploring. At scale and over time, the operational surface area—distribution, 
analysis, integrations, and security—becomes the work.



Use an open-source solution or lighter tooling to validate your key flows before investing in scale. 
Define your critical user journeys, test them in staging or dev, and verify that assertions make sense for 
your use cases. Gatling supports multiple languages (JavaScript/TypeScript, Java, Scala, Kotlin) and 
even imports Postman collections to help you cover real flows faster. Begin with a couple of key 
scenarios, simple assertions, and a first CI job to confirm connectivity and basic performance.



You’ll know your stack is stretching when you need to:



Run large and multi-region tests reliably

Compare runs and analyze regression trends without manual effort

Support different roles (dev, QA, SRE, management) from a shared platform

Automate tests in your CI pipeline with stop criteria/gates

Enforce governance via SSO, RBAC, quotas, and safe result sharing



That’s when a more robust platform becomes essential.

Vertical scaling (one big host) hits limits quickly and can skew results. Distributed generation lets you: 


Model global traffic patterns and regional failover scenarios

Avoid single-host bottlenecks and noisy neighbors

Keep sensitive traffic in-network (e.g., via Private Locations) while still using a central UI and APIs 
for control and analysis.

BUILD  VS  BUY

Validating your approach 

Scaling your tests horizontally

03

This is where “build” turns into “operate a product.” A platform that already handles generator lifecycle, 
placement, and network constraints will save significant toil.  

Virtual Machine

Virtual Machine

Virtual Machine

Virtual Machine
Virtual Machine

Virtual Machine

Virtual Machine

Virtual Machine

Virtual Machine
Virtual Machine

Your App

DEPLOYMENT 
ENVIRONMENT

INFRASTRUCTURE 
AS CODE

VIRTUAL  
MACHINES

SYSTEM  
UNDER TEST

Tools like Gatling let you automate the provisioning of multiple load generators (in cloud or in-network).



Performance testing should protect releases, not slow them down. Wire tests into CI so they run on 
PRs, merges, and on a schedule for long-running scenarios. Use stop criteria/performance gates to fail 
the pipeline when SLOs are breached, and rely on run comparisons to see exactly what changed across 
builds. That’s how teams keep velocity while raising quality.

Successful programs make performance a shared responsibility. Your solution needs to work for: 


Developers: code-first authoring, fast feedback loops

QA/SRE: dashboards, alerts, drill-downs, trend analysis

Leads/Managers: shareable reports, project-level views, budgets/quotas

Security/IT: SSO, RBAC, audit trails, and tenancy boundaries

At scale, a platform must deliver:



Control-plane availability and auto-recovery when parts fail

Data aggregation and retention without runaway storage costs

Redundant capacity & regional flexibility so tests still succeed when one path fails

Deployment choices (cloud, private, hybrid) to meet compliance, security, and data-sovereignty 
constraints

BUILD  VS  BUY

Embed performance into your delivery pipeline

Collaborating across teams

Making your solution reliable (beyond “it runs”)

04

If adoption requires manual workarounds or permission silos, performance testing becomes an 
afterthought instead of baked into engineering culture.

A mature platform ships these as table stakes; a homegrown stack must evolve them deliberately.

Layers of orchestration and control in a mature load testing platform

Cloud package 

storage

GATLING 

ENTERPRISE PLATFORM

USER

YOUR 

INFRASTRUCTURE

DEPLOYMENT 

ENVIRONMENT

IINFRASTRUCTURE-AS-CODE 

OPTIONS

Private package 

storage

System under test

Virtual Machine

Virtual Machine

Virtual Machine

Virtual Machine
Virtual Machine

Spawn / Terminate 

on demand

Virtual Machine

Virtual Machine

Virtual Machine

Virtual Machine
Virtual Machine

Control 

Plane 

Container
STORE   PACKAGE

BUILD   FROM   GITUPLOAD PACKAGE

DOWNLOAD   PACKAGE

OUTBOUND 

ACCESS

Download 
Gatling Binaries

Upload 

real-time metrics

Register 

& pull for work

cloud.gatling.io

api.gatling.io

Download

package

Upload 

package



Don’t compare “license vs. free.” Compare lifecycle costs and time to value:



Engineering time: build + continuous upkeep of orchestrators, data, dashboards, plugins


Infrastructure: compute, storage, egress, and capacity planning


Integration drift: CI, APM, and identity systems change


On-call: who gets paged when the test platform flakes?


Opportunity cost: features and fixes your team didn’t ship because they were platform-sitting


Assessing Total Cost of Ownership (TCO)

BUILD  VS  BUY

For many orgs, a managed platform ends up more economical and far less risky once you factor in 
continuity, governance, and organizational adoption.

Build vs. Buy — Pros & Cons

Buy
Enterprise platform

Build
Dimension

In-house solution


Time to value

Distributed orchestration

Metrics & analysis

Security & governance

Automations & CI/CD

Deploy anywhere

APM/alerts

TCO & team focus

You should build when You should buy when

Fast to prototype or run initial POCs, but slows 

dramatically as you scale across teams or regions.

You design and operate control, scheduling, 

retries, and data aggregation.

Stand up Time-series database + retention + 

trends/compare yourself; maintain indefinitely.

Build SSO/RBAC/quotas; 

keep mappings and policies current.

Maintain scripts/plugins 

as ecosystems evolve.

Custom work to keep traffic in-network/on-prem

 with central control.

Write and maintain 

integrations per tool.

Lower upfront cost; rising op-ex and on-call;

ongoing roadmap burden.

Highly unique, strategic requirements 

tied to your product.

Ready to use from day one, with faster 

onboarding and immediate value at scale.

Orchestration handled by the vendor, 

with consistent APIs and lifecycle management.

Strong data aggregation. Trends and 

Comparison to catch regressions quickly.  

Enterprise SSO, RBAC, 

quotas, and audit built-in.  

Native plugins and “any CI” path; stop criteria 

and gates to protect releases.

Private Locations: run generators inside your cloud 

or on-prem with one-way control. 

Off-the-shelf hooks/webhooks 

documented and supported. 

License cost offset by less platform toil 

and a predictable evolution path.

Common, repeatable needs at scale; 

extensible via APIs, and integrations.

05



BUILD  VS  BUY

Should we keep building?
A practical checklist

We run distributed, multi-region tests with confidence.

APM/alerting integrations don’t drift.

We handle high-scale load predictably.

We have owners for dashboards, trends, comparisons, and data retention.

SSO/RBAC/quotas and auditable sharing are in place.

Results are easy to share and consume.

Our CI/CD hooks are stable across tools, and easy to keep current.

Performance checks are pipeline-gated.

Onboarding new users is low-friction.

We can generate load in-network and scale globally when needed.

Generators are orchestrated reliably (scheduling, retries, aggregation) and don’t require heroics to keep green.  

Results and thresholds flow to the observability stack via supported, documented paths. 

We can push very large user volumes with consistent reliability and cost control (not just “one big box”). 

Trends & comparison exist and are used in every regression review.

Identity, roles, group mapping, and usage controls are first-class features, not ad-hoc scripts.

Stakeholders can open interactive reports, compare runs, and export data without bespoke tooling. 

We can trigger load tests from our main CI(s) and enforce gates/stop criteria without custom glue.

Pipelines fail automatically on defined SLO breaches; teams don’t “ship and hope.” 

Inviting users, assigning roles, and getting them productive is a documented, UI-driven flow. 

Traffic to private or internal endpoints remains fully within our network, while we also support seamlessly invoking public 
locations for high-scale, cross-region injection in the same test run.

It isn’t black-or-white—and it isn’t a forced path. If several boxes are unmet now, buying directly is often 
the highest-leverage move. You can still use Gatling Community Edition locally for authoring (e.g., code 
in JS/TS/Java/Scala/Kotlin or import Postman) while the platform handles scale, analysis, and 
governance. 

06



If load testing matters, 
your tool should too.
Your users demand speed and reliability, your load testing platform must deliver the same, with power, 
precision, and scalability. Gatling Enterprise Edition offers a complete platform built for modern teams, 
distributed systems, and real-world performance demands, aligned along five product pillars:

BUILD  VS  BUY

Analyze smarter 

& act faster

Gain real-time visibility with dashboards, trend 
comparisons, and actionable insights.

Unlock 

automations

Trigger simulations via CI/CD or API, apply stop 
criteria, and gate releases with performance 
thresholds.

Deploy load generators anywhere

Run tests from Gatling managed regions, your 
cloud, or on-prem.

Create tests 

your way

Build tests via code, low-code, or no-code, 
import Postman, script in JS/TS or Java, or design 
visually.

Collaborate & share 

results easily

Use RBAC, SSO, quotas, and shared reports. 
Share results via Slack, Teams, or Jira.

1

2

3

4

5

6

7

8

9

10

11

12

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29

import from 

import from

export default

const

  const = 

Define

{ , ,  } 
"@gatling.io/core";


{  }  " ";



 simulation((setUp) => {


   httpProtocol = http

    .baseUrl(" ")

    .acceptHeader(" ")

    .userAgentHeader(

      "

"

    );



 scn 
scenario(" ").exec(http(" ").get(" "));

  

  //  injection profile and execute the test

  setUp(scn.injectOpen(constantUsersPerSec(2).during(60)))

    .protocols(httpProtocol);

});

constantUsersPerSec scenario simulation

http @gatling.io/http

  // Define HTTP configuration


  // Define scenario


https://api-ecomm.gatling.io
application/json

Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) 
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/134.0.0.0 
Safari/537.36

Scenario Session /session

07



Gatling is the leading solution for modern load testing, enabling developers and 
organizations to deliver fast, reliable applications at scale. 



With its powerful open-source and enterprise platforms, Gatling empowers teams 
to test APIs, microservices, and web apps in real-world conditions. 



Trusted by thousands of companies worldwide, Gatling is the performance 
backbone for development, QA, and DevOps teams building the next generation 
of software.



Whether you’re scaling APIs, migrating to the cloud, or handling flash traffic 
spikes, Gatling helps you deliver fast, reliable performance.

DATASHEET

Ready to evaluate Enterprise Edition?Ready to evaluate Enterprise Edition?

Whether you’re scaling APIs, migrating to the cloud, or handling flash 
traffic spikes, Gatling helps you deliver fast, reliable performance.

Talk to an expert

https://gatling.io/book-a-demo?utm_source=techpager

