Latling 2025

° QDO

Build or buy
your load testing solution

for high-scale, engineering-driven organizations



o gUILD LS =LY

Why teams build (and why it's getting harder)

Spinning up a single test is simple. Running a trustworthy, distributed, pipeline-driven performance
platform that serves multiple teams is not. Many engineering teams begin with open source to validate
behavior. But over time, maintaining orchestration, analytics, integrations, and security turns into a
hidden burden.

Users already expect your application to feel as fast as the best in the world. That raises performance
testing from a late-stage validation step to a continuous quality engine. Modern architectures—
microservices, edge, hybrid cloud—make real test scenarios distributed by design. And raw metrics
aren’t enough; teams need actionable insights, gated pipelines, and reliable governance.

When evaluating options, most teams compare:

e Open source solutions — low cost, fast ramp, hands-on
o Enterprise / managed platforms — built for scale, insight, and team adoption

The risks and costs of building

Many teams start building for control, flexibility, or cost. But the deeper complexity often emerges later:

 Distributed orchestration. You become responsible for coordinating generators across locations,
retry logic, time sync, and result collection,plus handling partial failures gracefully. This is ongoing
engineering, not a one-off script.

o Metrics firehose & analysis. High-cardinality time-series data must be aggregated and retained in a
way that lets teams do run trends and run-to-run comparisons to spot regressions quickly. Without
this, people fall back to manual diffing and intuition.

« Integration drift. Cl vendors, runners, and APM tools evolve. Keeping pipelines green and alerts
useful means maintaining plugins, CLIs, and webhooks continually. Every broken connector is lost
confidence in testing.

o Security & governance. SSO, RBAC, group-to-role mapping, quotas, auditing, and shareable reports
are mandatory for cross-team adoption. Building and operating them well is non-trivial.

o Opportunity cost. Every hour spent keeping a homegrown platform alive is an hour not spent

shipping product. Unless performance testing is your product, this is rarely the highest-leverage use
of your engineers.

DIY can be great for exploring. At scale and over time, the operational surface area—distribution,
analysis, integrations, and security—becomes the work.

Liatling



o gUILD LS =LY

Validating your approach

Use an open-source solution or lighter tooling to validate your key flows before investing in scale.
Define your critical user journeys, test them in staging or dev, and verify that assertions make sense for
your use cases. Gatling supports multiple languages (JavaScript/TypeScript, Java, Scala, Kotlin) and
even imports Postman collections to help you cover real flows faster. Begin with a couple of key
scenarios, simple assertions, and a first Cl job to confirm connectivity and basic performance.

You'll know your stack is stretching when you need to:

Run large and multi-region tests reliably

o Compare runs and analyze regression trends without manual effort
Support different roles (dev, QA, SRE, management) from a shared platform
o Automate tests in your Cl pipeline with stop criteria/gates

o Enforce governance via SSO, RBAC, quotas, and safe result sharing

That’s when a more robust platform becomes essential.

Scaling your tests horizontally

Vertical scaling (one big host) hits limits quickly and can skew results. Distributed generation lets you:

» Model global traffic patterns and regional failover scenarios

» Avoid single-host bottlenecks and noisy neighbors

» Keep sensitive traffic in-network (e.g., via Private Locations) while still using a central Ul and APIs
for control and analysis.

INFRASTRUCTURE DEPLOYMENT UIRTUAL SYSTEM
AS CODE ENUIRONMENT MACHIMNES UNDER TEST

S & Virtual Machine “

@

Your App

S S Virtual Machine ‘d

Tools like Gatling let you automate the provisioning of multiple load generators (in cloud or in-network).

This is where “build” turns into “operate a product.” A platform that already handles generator lifecycle,
placement, and network constraints will save significant toil.

Catling



o gUILD LS =LY

Embed performance into your delivery pipeline

Performance testing should protect releases, not slow them down. Wire tests into Cl so they run on

PRs, merges, and on a schedule for long-running scenarios. Use stop criteria/performance gates to fail
the pipeline when SLOs are breached, and rely on run comparisons to see exactly what changed across
builds. That’s how teams keep velocity while raising quality.

Collaborating across teams

Successful programs make performance a shared responsibility. Your solution needs to work for:

o Developers: code-first authoring, fast feedback loops

QA/SRE: dashboards, alerts, drill-downs, trend analysis
Leads/Managers: shareable reports, project-level views, budgets/quotas
Security/IT: SSO, RBAC, audit trails, and tenancy boundaries

l If adoption requires manual workarounds or permission silos, performance testing become
| afterthought instead of baked into engineering culture.

Making your solution reliable (beyond “it runs”)

At scale, a platform must deliver:

Control-plane availability and auto-recovery when parts fail
Data aggregation and retention without runaway storage costs

o Redundant capacity & regional flexibility so tests still succeed when one path fails

constraints

Deployment choices (cloud, private, hybrid) to meet compliance, security, and data-sovereignty

: A mature platform ships these as table stakes; a homegrown stack must evolve them deliberately.

GATLING
ENTERPRISE PLATFORM

=

cloud gatling o

USER

OUTBOUND
ACCESS

- Download
< Gatling Binaries
apigatlingio

Upload
real-time metrics

Upload Download
package package

Cloud package
storage

= UPLOADPACKAGE

Layers of orchestration and control in a mature load testing platform

Register
& pull for work
- @@

YOUR
INFRASTRUCTURE

(V7]

R
e 2

8 Virtual Machine 8 Virtual Machine < DOWNLORD PACKABE
|

n
eeeeee

Control
Plane ~ STORE PACKAGE
Container

©BUILD FROM GIT

Catling

DEPLOYMENT INFRASTRUCTURE-RS-CODE
ENUIRONMENT OPTIONS

¥

an



o gD L5 5L

Assessing Total Cost of Ownership (TCO)

Don’'t compare “license vs. free.” Compare lifecycle costs and time to value:

o Engineering time: build + continuous upkeep of orchestrators, data, dashboards, plugins

« Infrastructure: compute, storage, egress, and capacity planning

Integration drift: Cl, APM, and identity systems change

e On-call: who gets paged when the test platform flakes?

o Opportunity cost: features and fixes your team didn’t ship because they were platform-sitting

For many orgs, a managed platform ends up more economical and far less risky once you factor in
continuity, governance, and organizational adoption.

Build vs. Buy — Pros & Cons

Dimension

Time to value

Distributed orchestration

Metrics & analysis

Automations & CI/CD
APM/alerts

Security & governance

Deploy anywhere

TCO & team focus

Liatling

Build

In-house solution

Fast to prototype or run initial POCs, but slows

dramatically as you scale across teams or regions.

You design and operate control, scheduling,
retries, and data aggregation.

Stand up Time-series database + retention +
trends/compare yourself; maintain indefinitely.

Maintain scripts/plugins
as ecosystems evolve.

Write and maintain
integrations per tool.

Build SSO/RBAC/quotas;
keep mappings and policies current.

Custom work to keep traffic in-network/on-prem
with central control.

Lower upfront cost; rising op-ex and on-call;
ongoing roadmap burden.

You should build when

Highly unique, strategic requirements
tied to your product.

Buy

Enterprise platform

Ready to use from day one, with faster
onboarding and immediate value at scale.

Orchestration handled by the vendor,
with consistent APIs and lifecycle management.

Strong data aggregation. Trends and
Comparison to catch regressions quickly.

Native plugins and “any CI” path; stop criteria
and gates to protect releases.

Off-the-shelf hooks/webhooks
documented and supported.

Enterprise SSO, RBAC,
quotas, and audit built-in.

Private Locations: run generators inside your cloud
or on-prem with one-way control.

License cost offset by less platform toil
and a predictable evolution path.

You should buy when

Common, repeatable needs at scale;
extensible via APIs, and integrations.



e gUILD LS =LY

Should we keep building?

A practical checklist

[

We run distributed, multi-region tests with confidence.
Generators are orchestrated reliably (scheduling, retries, aggregation) and don't require heroics to keep green.

We have owners for dashboards, trends, comparisons, and data retention.

Trends & comparison exist and are used in every regression review.

Our CI/CD hooks are stable across tools, and easy to keep current.
We can trigger load tests from our main Cl(s) and enforce gates/stop criteria without custom glue.

APM/alerting integrations don’t drift.

Results and thresholds flow to the observability stack via supported, documented paths.

SSO/RBAC/quotas and auditable sharing are in place.

Identity, roles, group mapping, and usage controls are first-class features, not ad-hoc scripts.

Performance checks are pipeline-gated.
Pipelines fail automatically on defined SLO breaches; teams don't “ship and hope.”

We handle high-scale load predictably.

We can push very large user volumes with consistent reliability and cost control (not just “one big box”).

Results are easy to share and consume.
Stakeholders can open interactive reports, compare runs, and export data without bespoke tooling.

Onboarding new users is low-friction.
Inviting users, assigning roles, and getting them productive is a documented, Ul-driven flow.

We can generate load in-network and scale globally when needed.
Traffic to private or internal endpoints remains fully within our network, while we also support seamlessly invoking public
locations for high-scale, cross-region injection in the same test run.

It isn't black-or-white—and it isn't a forced path. If several boxes are unmet now, buying directly is often
the highest-leverage move. You can still use Gatling Community Edition locally for authoring (e.g., code
in JS/TS/Java/Scala/Kotlin or import Postman) while the platform handles scale, analysis, and
governance.

Latling

_
[mp]



cUILD LS =Y

If load testing matters,
your tool should too.

Your users demand speed and reliability, your load testing platform must deliver the same, with power,
precision, and scalability. Gatling Enterprise Edition offers a complete platform built for modern teams,

distributed systems, and real-world performance demands, aligned along five product pillars:

Analyze smarter
& act faster

Gain real-time visibility with dashboards, trend
comparisons, and actionable insights.

(020 ]
Unlock
automations

Trigger simulations via CI/CD or API, apply stop
criteria, and gate releases with performance
thresholds.

i
L.

Deploy load generators anywhere

Run tests from Gatling managed regions, your
cloud, or on-prem.

L4

%

Create tests
your way

Build tests via code, low-code, or no-code,
import Postman, script in JS/TS or Java, or design
visually.

*

Collaborate & share
results easily

Use RBAC, SSO, quotas, and shared reports.
Share results via Slack, Teams, or Jira.

Sotiedtling




Latling

Gatling is the leading solution for modern load testing, enabling developers and
organizations to deliver fast, reliable applications at scale.

With its powerful open-source and enterprise platforms, Gatling empowers teams
to test APIs, microservices, and web apps in real-world conditions.

Trusted by thousands of companies worldwide, Gatling is the performance
backbone for development, QA, and DevOps teams building the next generation
of software.

Whether you're scaling APIs, migrating to the cloud, or handling flash traffic
spikes, Gatling helps you deliver fast, reliable performance.

Ready to evaluate Enterprise Edition?

Whether you're scaling APIs, migrating to the cloud, or handling flash Talk to an expert >
traffic spikes, Gatling helps you deliver fast, reliable performance.


https://gatling.io/book-a-demo?utm_source=techpager

