ﬁatling 2025

o ORTRSAEET

Why is Gatling .

L 4 - - R w8

"""""

Common blockers to achieving
your load testing goals

What engineering teams consistently run into when trying to run reliable,

high-performance load tests.

CJ

Test architectures are complex
and time-consuming to build and maintain

Standing up a reliable load testing environment requires
heavy engineering effort.

Common issues:

« Inability to simulate real concurrency due to blocking
or thread-per-user models

Fragile distributed setups that break under CPU, network,
or configuration drift

Metrics pipelines that drop samples or flatten peaks when
throughput increases

High operational load just to keep load generators,
configurations, and environments aligned

®

Large-scale tests become
too expensive to run

Inefficient engines require too many machines to achieve
meaningful load.

Common issues:

» Large load generator fleets driving up cloud compute costs

PU, memory, and bandwidth consumption for each

as traffic scales

hat waste

L

Even existing load testing setups
often fail to scale

Most engines saturate compute, memory, or sockets long
before reaching realistic traffic levels.

Common issues:
» Limited scalability caused by thread-per-user architectures
» CPU exhaustion before real concurrency is reached

» Unpredictable throughput under bursts or TLS-heavy
traffic

« Inability to reach peak-load scenarios without load
generator failures

0

Modern environments require flexible & secure
deployment models

Today’s systems span SaaS, Kubernetes, private VPCs,
and on-prem environments. Load testing must adapt.

Common issues:

« Difficulty running tests behind firewalls or inside private
networks

Limited support for hybrid setups (SaaS-controlled,
self-managed load generators)

No ability to run load generators close to microservices
for low-latency tests

o Lack of secure, compliance-friendly options for regulated
workloads

engine that is purpose-built for real concurrency,
ctly where Gatling stands apart.

Inside the Gatling load generation architecture

Gatling Enterprise Edition is powered by one of the most scalable, resource-efficient,
and battle-tested load generation architecture in the industry.

Sl INNOUATIVE ENGINE
Simulate a large # of VUs, multi-threaded
and without using much memory or CPU
—
= | = | = | .
= = g + g
Scenario Injection Profile
. J) Load Generator(s) Data Aggregator and Storage
User journey How Virtual Users) . . L.
and behavior are added to the 1 or multiple servers Retrieving, cleaning, organizing
description test over time

-’ “I\lettg

Optimized for low-
latency and high-
throughput
communication

data to be visualized

Advanced reporting

Data on all requests
Build your indicators

-

While most legacy tools rely on heavy, thread-per-user architectures,

Gatling’s engine is fully asynchronous, event-driven, and optimized
for massive concurrency.

This design allows organizations to simulate millions of virtual users,
sustain extreme throughput, and execute hundreds of parallel tests,
all with far fewer machines than traditional solutions.

Generate Virtual Users
who generate Requests

a a

Application/service
Endpoint under test

Aggregate Advanced Metrics
(Counts, Response times,
Errors statuses, etc.)

Database

or microservices
or third-party services

Operating at the physical limits of a machine

Why Gatling’s engine delivers real concurrency, predictable performance, and extreme
throughput with fewer machines.

CONSTRAINT

~64,000 concurrent sockets
per target server

60-second port reuse delay

TLS handshake CPU cost

Variable resource cost
per request

DESCRIPTION

A TCP connection corresponds to a quadruplet (local
IP, local port, target IP, target port). With one local IP,
a machine can open about 64,000 concurrent
connections to the same server.

The Linux kernel enforces a ~60s TIME_WAIT before
reusing closed TCP ports, a hard-coded safeguard
to prevent duplicate packet collisions.

Establishing HTTPS connections requires CPU-
intensive encryption key exchanges and validation,
which grow heavier with stronger ciphers.

CPU, memory, and bandwidth consumption vary
depending on payload size, response complexity,
and scenario design.

b ITY

Gatling’s Netty-based engine uses non-blocking I/0
to fully leverage available sockets and sustain
maximum concurrency.

Gatling reuses persistent connections within virtual
user sessions to minimize reconnections and keep
throughput steady.

Gatling integrates BoringSSL for efficient, secure
TLS operations and optimized session reuse.

Gatling’s asynchronous scheduler balances I/O
and computation to maintain high concurrency
under real-world loads.

| A single load generator can realistically sustain up to 60,000 concurrent virtual users or 300,000

requests per second, depending on protocol complexity and service architecture.

What you can achieve with Gatling

Gatling Enterprise Edition enables teams to simulate millions of virtual users and millions of requests
per second, across any architecture: monoliths, APIs, microservices, Kubernetes clusters, and globally
distributed streaming platforms.

Up to 60,000 Up to 300,000
concurrent virtual users requests per seconds
per load generator on each load generator
They generate millions Streaming leaders generate
of requests per second massive traffic to prepare
for any kind of architecture for record-breaking peaks
Adobe CIRCLE(Q B8] CANAL+
QO Desjardins ¥ HMH francestv oA+

nnnnnnnnnnnnnn

5:(InPost v/ Tul e TG o

5 million+

Concurrent virtual users
with 20 load generators

Deployment models
for load generation

Gatling Enterprise Edition adapts to any network, security, or infrastructure context.

Whatitis Private | Dedicated IP: @ Custom weight distribution
Load generators hosted and operated by Gatling 1 Europe - aris v 4 x % @
on AWS, pre-configured for optimal performance. o AP~ Ty “ 10 s % @

Default instance type: c6i.xlarge (4 vCPU).

11 Europe - Dublin v 12 5 %

Epab"ities @ SA East - So Paulo v 4 5% B
Up to 3 million virtual users with 50 concurrent load = U5 Wese Oreson e ¢ » % §
generators. Configurable up to 100-200 with validation = AP SouthEast - Sydney v 1 LEREOEN |
to avoid triggering cloud provider security limits. + Add location so T 100%
*Aare
What itis .
sk Organization Locations Control planes
Deploy and manage your own injectors in AWS, Azure, o ;
API tokens
GCP, Kubernetes, OpenShift, or on-premises. _ :
Pt f : =+ Create Control Plane 2 Search by Name
Full control over sizing, scaling, and security. [® Packages
Capabilities Dedicated IPs NAMES DESCRIPTION &
Unlimited scaling, constrained only by your own ® Private Locations priszure-prod Private Location on Azure
1
infrastructure quotas and compute capacity. g private Location Demo

| Whichever model you choose, test orchestration, reporting, data aggregation, and scenario
execution remain fully centralized within Gatling Enterprise Edition.

Premium support
for high-scale testing

When you choose Gatling Enterprise Edition, you also get enterprise-grade
support designed for mission-critical load testing.

Architecture & topology Scenario design Debugging
recommendations & performance strategy system bottlenecks

High-scale configuration Injector health monitoring Best practices for JVM warmup,
guidance & troubleshooting TLS optimization, scaling patterns

| You are never alone in your high-scale testing journey.

How to choose your load generation configuration

Gatling Enterprise Edition adapts to any network and security context. Whether your services are publicly exposed, protected
by firewalls, or fully isolated on-premises, Gatling provides the right deployment model for your load generators.

The following table summarizes which configuration fits best depending on your endpoint environment and testing requirements.

ENDPOINT INFRASTRUCTURE

Public Services
(Internet-exposed)

Public Services with Firewall
/ DDoS Protection

Cloud-Native or
Microservices Environments

Secure or Regulated
Environments

Private Services
(Behind Firewalls, No Direct
Internet Access)

No Access to Public Cloud
Providers

TESTING REQUIREMENTS

Public endpoints without strict
firewall rules or rate limits

Client must allow Gatling traffic
through security layers

Need to simulate load close to the
application to minimize latency

Testing requires sensitive data,
secret keys, or regulated handling
of credentials

Application or API cannot
be reached from public networks

On-premises environments,
managed datacenters

RECOMMENDED SOLUTION

Gatling-Managed Load Generators

Gatling-Managed Load Generators
with Dedicated IP

Private Locations
(Cloud-Managed)

Private Locations
(Cloud-Managed)

Private Locations
(Cloud-managed)

Private Locations
(Dedicated Machines)

DESCRIPTION

Fully managed by Gatling in AWS

Fully managed by Gatling in AWS, using fixed
IPs for whitelisting

You can deploy in AWS, Azure, GCP,
Kubernetes, or OpenShift, with full control
over the entire environment.

You can deploy in AWS, Azure, GCP,
Kubernetes, or OpenShift, with full control
over the entire environment.

You can deploy in AWS, Azure, GCP,
Kubernetes, or OpenShift, with full control
over the entire environment.

You can deploy in AWS, Azure, GCP,
Kubernetes, or OpenShift, with full control
over the entire environment.

Latling

Gatling is the leading solution for modern load testing, er
and organizations to deliver fast, reliable applications a

With its powerful open-source and enterprise platfor

of software. :

Whether you're scaling APIs, migrating to
spikes, Gatling helps you deliver fast, re

Talk to an expert >

Whether you're scaiiné APIS, '
traffic spikes, Gatling helps

https://gatling.io/book-a-demo?utm_source=techpager

