
Discover the high-performance engine behind
Gatling’s load generation architecture

2025

Why is Gatling

the best load generation engine?

DATASHEET

What engineering teams consistently run into when trying to run reliable,

high-performance load tests.

To overcome these structural limitations, teams need a load testing engine that is purpose-built for real concurrency,
predictable performance, and seamless operation at scale. This is exactly where Gatling stands apart.

Common blockers to achieving
your load testing goals

Test architectures are complex

and time-consuming to build and maintain

Large-scale tests become

too expensive to run Modern environments require flexible & secure

deployment models

Standing up a reliable load testing environment requires
heavy engineering effort.

Common issues:

Inability to simulate real concurrency due to blocking  
or thread-per-user models

Fragile distributed setups that break under CPU, network,
or configuration drift

Metrics pipelines that drop samples or flatten peaks when
throughput increases

High operational load just to keep load generators,
configurations, and environments aligned  

Inefficient engines require too many machines to achieve
meaningful load.

Common issues:

L arge load generator fleets driving up cloud compute costs

High CPU, memory, and bandwidth consumption for each
virtual users

Unpredictable test costs as traffic scales

Long warm-up/cool-down periods that waste
infrastructure time

Today’s systems span SaaS, Kubernetes, private VPCs,
and on-prem environments. Load testing must adapt.

Common issues:

D ifficulty running tests behind firewalls or inside private
networks

Limited support for hybrid setups (SaaS-controlled,  
self-managed load generators)

No ability to run load generators close to microservices  
for low-latency tests

Lack of secure, compliance-friendly options for regulated
workloads

Even existing load testing setups

often fail to scale

Most engines saturate compute, memory, or sockets long
before reaching realistic traffic levels.

Common issues:

Limited scalability caused by thread-per-user architectures

CPU exhaustion before real concurrency is reached

Unpredictable throughput under bursts or TLS-heavy
traffic

Inability to reach peak-load scenarios without load
generator failures

Application/service Database
Endpoint under test or microservices

or third-party services

SIMULATION INNOVATIVE ENGINE

Scenario Injection Profile
User journey  
and behavior

description

How Virtual Users
are added to the

test over time

While most legacy tools rely on heavy, thread-per-user architectures,
Gatling’s engine is fully asynchronous, event-driven, and optimized
for massive concurrency.

This design allows organizations to simulate millions of virtual users,
sustain extreme throughput, and execute hundreds of parallel tests,
all with far fewer machines than traditional solutions.

Load Generator(s) Data Aggregator and Storage
Retrieving, cleaning, organizing

data to be visualized

+

1 or multiple servers

Aggregate Advanced Metrics

(Counts, Response times,
Errors statuses, etc.)

Generate Virtual Users
who generate Requests

Optimized for low-
latency and high-

throughput
communication

Advanced reporting
Data on all requests  
Build your indicators

Simulate a large # of VUs, multi-threaded
and without using much memory or CPU

Inside the Gatling load generation architecture
Gatling Enterprise Edition is powered by one of the most scalable, resource-efficient,  
and battle-tested load generation architecture in the industry.

Why Gatling’s engine delivers real concurrency, predictable performance, and extreme
throughput with fewer machines.

Constraint Description How gatling reaches maximum capacity

~64,000 concurrent sockets  
per target server

60-second port reuse delay

TLS handshake CPU cost

Variable resource cost  
per request

A TCP connection corresponds to a quadruplet (local
IP, local port, target IP, target port). With one local IP,
a machine can open about 64,000 concurrent
connections to the same server.

The Linux kernel enforces a ~60s TIME_WAIT before
reusing closed TCP ports, a hard-coded safeguard  
to prevent duplicate packet collisions.

Establishing HTTPS connections requires CPU-
intensive encryption key exchanges and validation,
which grow heavier with stronger ciphers.

CPU, memory, and bandwidth consumption vary
depending on payload size, response complexity,  
and scenario design.

Gatling’s Netty-based engine uses non-blocking I/O  
to fully leverage available sockets and sustain
maximum concurrency.

Gatling reuses persistent connections within virtual
user sessions to minimize reconnections and keep
throughput steady.

Gatling integrates BoringSSL for efficient, secure
TLS operations and optimized session reuse.

Gatling’s asynchronous scheduler balances I/O  
and computation to maintain high concurrency  
under real-world loads.

A single load generator can realistically sustain up to 60,000 concurrent virtual users or 300,000
requests per second, depending on protocol complexity and service architecture.

Operating at the physical limits of a machine

Gatling Enterprise Edition enables teams to simulate millions of virtual users and millions of requests  
per second, across any architecture: monoliths, APIs, microservices, Kubernetes clusters, and globally
distributed streaming platforms.

What you can achieve with Gatling

Up to 60,000
concurrent virtual users

per load generator

Up to 300,000
requests per seconds

on each load generator

They generate millions

of requests per second

for any kind of architecture

Streaming leaders generate
massive traffic to prepare

for record-breaking peaks

What customers leveraging Gatling
Enterprise Edition can reach

200+
Automated tests running in

parallel, 24/7

100+
Load generators running

simultaneously

5 million+
Concurrent virtual users
with 20 load generators

1. Gatling-managed load generators

2. Self-managed load generators

What it is

What it is

Capabilities

Capabilities

Load generators hosted and operated by Gatling  
on AWS, pre-configured for optimal performance.
Default instance type: c6i.xlarge (4 vCPU).

Deploy and manage your own injectors in AWS, Azure,
GCP, Kubernetes, OpenShift, or on-premises.  
Full control over sizing, scaling, and security.

Up to 3 million virtual users with 50 concurrent load
generators. Configurable up to 100–200 with validation
to avoid triggering cloud provider security limits.

Unlimited scaling, constrained only by your own
infrastructure quotas and compute capacity.

Gatling Enterprise Edition adapts to any network, security, or infrastructure context.

When you choose Gatling Enterprise Edition, you also get enterprise-grade
support designed for mission-critical load testing.

Architecture & topology
recommendations

High-scale configuration

guidance

Scenario design

& performance strategy

Injector health monitoring

& troubleshooting

Debugging

system bottlenecks

Best practices for JVM warmup,

TLS optimization, scaling patterns

Deployment models

for load generation

Premium support

for high-scale testing

Whichever model you choose, test orchestration, reporting, data aggregation, and scenario
execution remain fully centralized within Gatling Enterprise Edition.

You are never alone in your high-scale testing journey.

How to choose your load generation configuration
Gatling Enterprise Edition adapts to any network and security context. Whether your services are publicly exposed, protected  
by firewalls, or fully isolated on-premises, Gatling provides the right deployment model for your load generators.

The following table summarizes which configuration fits best depending on your endpoint environment and testing requirements.

ENDPOINT INFRASTRUCTURE TESTING REQUIREMENTS RECOMMENDED SOLUTION DESCRIPTION

Public Services

(Internet-exposed)

Public Services with Firewall
/ DDoS Protection

Cloud-Native or
Microservices Environments

Secure or Regulated
Environments

Private Services

(Behind Firewalls, No Direct
Internet Access)

No Access to Public Cloud
Providers

Public endpoints without strict
firewall rules or rate limits

Client must allow Gatling traffic
through security layers

Need to simulate load close to the
application to minimize latency

Testing requires sensitive data,
secret keys, or regulated handling  
of credentials

Application or API cannot  
be reached from public networks

On-premises environments,
managed datacenters

Gatling-Managed Load Generators

Gatling-Managed Load Generators

with Dedicated IP

Private Locations

(Cloud-Managed)

Private Locations

(Cloud-Managed)

Private Locations

(Cloud-managed)

Private Locations

(Dedicated Machines)

Fully managed by Gatling in AWS

Fully managed by Gatling in AWS, using fixed
IPs for whitelisting

You can deploy in AWS, Azure, GCP,
Kubernetes, or OpenShift, with full control
over the entire environment.

You can deploy in AWS, Azure, GCP,
Kubernetes, or OpenShift, with full control
over the entire environment.

You can deploy in AWS, Azure, GCP,
Kubernetes, or OpenShift, with full control
over the entire environment.

You can deploy in AWS, Azure, GCP,
Kubernetes, or OpenShift, with full control
over the entire environment.

Gatling is the leading solution for modern load testing, enabling developers  
and organizations to deliver fast, reliable applications at scale.

With its powerful open-source and enterprise platforms, Gatling empowers teams
to test APIs, microservices, and web apps in real-world conditions.

Trusted by thousands of companies worldwide, Gatling is the performance
backbone for development, QA, and DevOps teams building the next generation
of software.

Whether you’re scaling APIs, migrating to the cloud, or handling flash traffic
spikes, Gatling helps you deliver fast, reliable performance.

DATASHEET

Ready to evaluate Enterprise Edition?Ready to evaluate Enterprise Edition?

Whether you’re scaling APIs, migrating to the cloud, or handling flash
traffic spikes, Gatling helps you deliver fast, reliable performance.

Talk to an expert

https://gatling.io/book-a-demo?utm_source=techpager

