
2025

Leveraging Gatling for
GitOps‑driven load testing
Automate test environments, enforce performance
gates, and deliver reliable applications at scale with
Gatling Enterprise Edition.

DATASHEET

Leveraging Gatling for GitOps‑driven load testing

01

Modern DevOps teams have automated nearly every part of their delivery pipeline: Build systems,
deployments, observability, and even infrastructure provisioning.

Yet performance testing often remains the exception: manual, detached, and inconsistent.

As organizations adopt GitOps, it is time to extend the same principles (version control, declarative
state, automation, and auditability) to load testing.

Gatling Enterprise Edition brings performance testing into the GitOps era.

By combining test-as-code principles with enterprise orchestration, Gatling Enterprise Edition enables
platform, QA, and SRE teams to improve performance testing across clusters, CI/CD pipelines,  
and global regions.

It transforms tests into first-class citizens of your delivery workflow: written as code, versioned in Git,
and executed automatically in CI/CD pipelines. Meanwhile, load-testing infrastructure is managed
declaratively through Infrastructure-as-Code.

The result: safer releases, faster feedback loops, and measurable reliability gains across the entire
delivery lifecycle.

This datasheet explains how adopting GitOps-compatible load testing enables platform teams  
to continuously verify reliability and scalability without slowing down delivery velocity or developer
feedback loops.

Leveraging Gatling for GitOps‑driven load testing

02

GitOps: From infrastructure to Everything-as-Code

GitOps is not a product. It is a software operations model built around a simple idea: Git as the single source
of truth for everything that defines a system.

In practice, every piece of operational state (application configuration, infrastructure resources, policies, and
deployment definitions) is stored as code in Git.

Each modification follows the same lifecycle as application code: it is proposed through a pull request,
reviewed, and applied automatically to target environments by a reconciler or CI/CD system.

The result is an auditable, version-controlled, and self-healing system that continuously converges toward its
declared desired state.

GitOps has already transformed how modern organizations manage infrastructure. The same approach can
now be applied to performance validation, ensuring that scalability and responsiveness are verified
continuously as part of the same lifecycle that governs build and deploy steps.

Why GitOps for load testing?

Traditional load testing models are incompatible with modern continuous delivery.

They depend on manual execution, isolated tooling, and static staging environments that fail to reproduce
real-world conditions. The result is brittle feedback loops, false positives, and performance regressions
discovered too late in the cycle.

A GitOps-compatible approach to load testing solves these problems by applying the same rigor that governs
deployment automation:

Observable
Results are pushed automatically to APM and
observability tools, dashboards, and monitoring
systems, closing the feedback loop.

Declarative
Test environments, infrastructure, and datasets are
provisioned as code, ensuring reproducibility.

Versioned
Simulations, configurations, and thresholds are stored

in Git and reviewed like any other source artifact.

Automated
Each merge, tag, or deployment trigger can start
performance tests automatically in CI/CD.

Core capabilities that enable GitOps  
with Gatling Enterprise Edition

03

Leveraging Gatling for GitOps‑driven load testing

Test-as-Code
In Gatling, simulations are written as code using
JavaScript, TypeScript, Scala, Java, or Kotlin.

Each simulation explicitly describes:

The user journey and sequence of requests,

Data feeders for parameterization,

The injection profile defining virtual user load and
arrival rate,

Assertions that define acceptable performance
thresholds.

By describing test logic as code, load testing inherits the
same collaboration and governance as software
engineering.

Key advantages:

Traceability: Every change is linked to a commit,
providing full history and rollback capability.

Collaboration: Developers, SREs, and QA engineers
can review and test changes through standard Git
workflows.

Reproducibility: A simulation behaves identically
whether it runs locally, in CI, or in distributed
infrastructure.

Automation: Tests can be triggered automatically on
pull requests or before deployments.

The result? Your load tests evolve at the same speed as
your codebase, remain reliable and reviewable, and stay
aligned with your release cadence.

Configuration-as-Code
Beyond simulation logic, Gatling Enterprise Edition
allows teams to define test configurations declaratively
using a descriptor file (typically .conf).

This file acts as a manifest capturing the entire
execution context of a test, including:

The simulations and packages to include,

Load profiles, durations, and pacing,

Environment variables such as API keys, base URLs,
or credentials,

Load generator topology, regional distribution, and
resource allocations,

Input datasets or feeder definitions.

When this configuration is stored in Git, every test
becomes versioned, reviewable, and reproducible. It
guarantees consistent behavior across developer
workstations, CI pipelines, and pre-production
environments, eliminating the “works on my machine”
syndrome.

The result? configuration consistency becomes part of
your engineering discipline. Each simulation runs
predictably, regardless of where it is executed.

1

2

3

4

5

6

7

8

9

10

11

12

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29

import from

import from

export default

const

 const =

Define

{ , , }
"@gatling.io/core";

{ } " ";

 simulation((setUp) => {

 httpProtocol = http

 .baseUrl(" ")

 .acceptHeader(" ")

 .userAgentHeader(

 "

"

);

 scn scenario(" ").exec(http(" ").get("
"));

 // injection profile and execute the test

 setUp(scn.injectOpen(constantUsersPerSec(2).during(60)))

 .protocols(httpProtocol);

});

constantUsersPerSec scenario simulation

http @gatling.io/http

 // Define HTTP configuration

 // Define scenario

https://api-ecomm.gatling.io
application/json

Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/134.0.0.0
Safari/537.36

Scenario Session /
session

With Gatling Enterprise Edition you can scale the same simulation logic across regions,
teams, or environments while maintaining a single source of truth.

Core capabilities that enable GitOps  
with Gatling Enterprise Edition

04

Leveraging Gatling for GitOps‑driven load testing

Build from Git
In a GitOps workflow, the repository defines everything
necessary to build, test, and deploy. Gatling Enterprise
Edition extends that model to performance validation.

With Build from Git, Gatling Enterprise Edition retrieves
simulations and configurations directly from your
repository (GitHub, GitLab, Bitbucket, or equivalent)
without any packaging step.

The process is simple:

Reference the repository and branch within Gatling
Enterprise Edition.

On each commit or merge, the system pulls the
source, builds the artifact, and runs the test in the
defined environment.

Assertions and stop criteria enforce pass or fail logic
automatically.

Each run can be tied to a specific Git commit when using
Build from Git, ensuring full traceability between
performance metrics and the exact source code that
produced them.

The result? a continuous feedback loop that aligns code
changes, infrastructure updates, and performance
outcomes within the same version control lifecycle.

Infrastructure-as-Code
Scalable performance testing depends as much on
disciplined infrastructure management as on test logic.

Gatling Enterprise Edition allows you to manage load
testing infrastructure using Infrastructure-as-Code
(IaC) with the same declarative tools you already use
for production systems.

You can provision and manage:

Private locations for secure, self-hosted load
generation,

Load generators across multiple cloud regions,

Network and resource specifications such as CPU,
memory, and bandwidth allocation.

IaC definitions can be maintained in Terraform, AWS
CloudFormation, or Helm charts for Kubernetes.

This model enables ephemeral test environments,
short-lived isolated setups created automatically to
validate a pull request or pre-production deployment.
Once tests complete, the environment is destroyed.

The result? predictable, cost-efficient, and policy-
compliant test infrastructure that fits seamlessly within
GitOps delivery patterns.

1

2

3

4

5

6

7

8

9

10

11

12

13 
14 
15 
16 
17 

module {

 source =

 id =
 description =

 region =
 subnets = []

 security-groups = []

}

"location"
"git::https://

github.com/gatling/gatling-enterprise-
control-plane-deployment//terraform/aws/
location"

"prl_aws"

"Private Location on

AWS"

 "<Region>"

"<SubnetId>"
"<SecurityGroupId>"

Combined with Gatling Enterprise Edition orchestration, IaC ensures that the same code
which provisions environments also executes tests and collects telemetry.

05

Leveraging Gatling for GitOps‑driven load testing

GitOps-ready continuous load testing

Declarative performance governance
Tests are controlled by assertions, which are
performance thresholds defined as code.

They can target latency percentiles, throughput, error
rates, or request success ratios. When thresholds are
violated, the pipeline fails automatically, blocking
promotion to the next stage.

This transforms performance testing into a governed
policy, versioned and enforced like other compliance
checks.

Seamless CI/CD automation
Gatling integrates natively with GitHub Actions, GitLab
CI, Jenkins, and other automation systems.

Test execution can be configured declaratively in YAML
files or triggered via API.

Typical usage patterns include:

Post-deployment smoke tests,

Nightly regression tests,

Pre-release stress validation before production
rollout.

Assertions and stop criteria ensure that only performant
builds are promoted.

Traceable, observable, and auditable results
Every run is linked to a specific commit (when using Build
from Git) and visualized in Gatling Enterprise dashboards.

These dashboards include trend and comparison views,
enabling teams to track regressions, measure
performance evolution across branches, and verify
compliance with SLOs.

Gatling also integrates with major APM and observability
platforms such as Datadog and Dynatrace.

These integrations make it possible to correlate load test
metrics with real infrastructure telemetry, accelerating
root-cause analysis and reducing mean time to
resolution.

With Gatling Enterprise Edition performance testing becomes continuous, declarative,
and fully traceable, with feedback loops that reach both developers and observability

systems.

Choosing the right platform
for modern load testing

Leveraging Gatling for GitOps‑driven load testing

Embedding load testing into the GitOps lifecycle transforms performance validation from a manual
activity into an automated, measurable discipline. With Gatling Enterprise Edition, simulations,
configurations, and infrastructure definitions are all expressed as code, versioned, and governed through
the same workflows that manage application delivery.

Results are observable and auditable, providing end-to-end traceability from commit to performance
impact. The outcome is a delivery pipeline where reliability grows in parallel with speed. Each release is
deployed with confidence, because performance verification is no longer an afterthought but a built-in
step of your continuous delivery process.

1

2

3

4

5

6

7

8

9

10

11

12

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29

import from

import from

export default

const

 const =

Define

{ , , }
"@gatling.io/core";

{ } " ";

 simulation((setUp) => {

 httpProtocol = http

 .baseUrl(" ")

 .acceptHeader(" ")

 .userAgentHeader(

 "

"

);

 scn
scenario(" ").exec(http(" ").get(" "));

 // injection profile and execute the test

 setUp(scn.injectOpen(constantUsersPerSec(2).during(60)))

 .protocols(httpProtocol);

});

constantUsersPerSec scenario simulation

http @gatling.io/http

 // Define HTTP configuration

 // Define scenario

https://api-ecomm.gatling.io
application/json

Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/134.0.0.0
Safari/537.36

Scenario Session /session

06

Analyze smarter and act faster
Gain real-time visibility with dashboards, trend
comparisons, and actionable insights.

Unlock automation
Trigger simulations via CI/CD or API, apply stop
criteria, and gate releases with performance
thresholds.

Deploy load generators anywhere
Run tests from Gatling managed regions, your
cloud, or on-prem.

Create tests your way
Build tests via code, low-code, or no-code,
import Postman, script in JS/TS or Java, or design
visually.

Collaborate and share results easily
Use RBAC, SSO, quotas, and shared reports.
Share results via Slack, Teams, or Jira.

Gatling is the leading solution for modern load testing, enabling developers and
organizations to deliver fast, reliable applications at scale.

With its powerful open-source and enterprise platforms, Gatling empowers teams
to test APIs, microservices, and web apps in real-world conditions.

Trusted by thousands of companies worldwide, Gatling is the performance
backbone for development, QA, and DevOps teams building the next generation
of software.

Whether you’re scaling APIs, migrating to the cloud, or handling flash traffic
spikes, Gatling helps you deliver fast, reliable performance.

DATASHEET

Ready to evaluate Enterprise Edition?Ready to evaluate Enterprise Edition?

Whether you’re scaling APIs, migrating to the cloud, or handling flash
traffic spikes, Gatling helps you deliver fast, reliable performance.

Talk to an expert

https://gatling.io/book-a-demo?utm_source=techpager

