
2025

Optimizing cloud infrastructure
costs with load testing
A practical FinOps guide for engineering and platform
teams

EBOOK

Cloud infrastructure has made scaling applications easier than ever, and overspending just as easy.
Autoscaling, pay-as-you-go pricing, and managed services promise flexibility, yet many organizations
still rely on rough estimates, historical traffic, or oversized “safety buffers” when managing
environments.

The result is predictable: non-production clusters running 24/7, autoscaling that reacts too late or too
early, and infrastructure bills that outpace user growth. Traditional FinOps often catches these
inefficiencies after the fact—once the money is already spent.

Load testing changes this dynamic. By simulating realistic traffic patterns before production,
engineering and platform teams can:

Expose scaling gaps and hidden bottlenecks early.

Right-size environments based on evidence, not guesswork.

Quantify cost/performance trade-offs for architectural decisions.

OPTIMIZING CLOUD INFRASTRUCTURE COSTS WITH LOAD TESTING

02

This whitepaper provides a practical, engineering-driven guide to controlling cloud costs through load
testing. It focuses on key capabilities that help teams identify inefficiencies, optimize scaling strategies,
and institutionalize cost-aware practices, illustrated with examples from Gatling Enterprise Edition, a
modern load testing platform.

Introduction

Several recurring patterns contribute to runaway cloud spend: 

Always-on non-production environments: Staging or pre-production clusters left running overnight
or during weekends.

Safety buffers everywhere: Over-sizing instances or clusters “just in case,” with no clear
justification.

Lagging autoscalers: Thresholds that are too optimistic or too slow to react, causing either over-
spend or performance degradation.

Invisible inefficiencies: Cloud billing and monitoring tools rarely highlight underused resources or
suboptimal scaling decisions.

One-time decisions: Infrastructure sizing choices made early in a project often persist unchanged
for years.

Load testing allows teams to close the loop between expected traffic and actual infrastructure
behavior.

Instead of waiting for real users to reveal scaling inefficiencies, engineering teams can:

Rehearse scaling events under controlled conditions.

Measure capacity limits and failure modes before production.

Correlate performance signals with infrastructure metrics to detect waste.

Identify the cost-performance sweet spot through empirical evidence.

When used systematically, load testing transforms FinOps from an after-the-fact accounting exercise
into a proactive engineering discipline.

03

Common cost waste patterns

Where load testing changes the equation

OPTIMIZING CLOUD INFRASTRUCTURE COSTS WITH LOAD TESTING

The FinOps challenge in modern cloud environments

Why autoscaling alone isn’t enough

Autoscaling is a cornerstone of modern cloud architectures, but it’s inherently reactive. Scaling rules
typically rely on fixed utilization thresholds, such as “add instances when CPU > 70 %.” These values
are often chosen heuristically, not empirically, and the scaling process itself can take minutes.

By the time new capacity comes online, users may have already experienced degraded performance.

Conversely, conservative thresholds can lead to premature scale-ups, adding cost without delivering
real user benefit. Both scenarios stem from the same root cause: lack of data about how the system
behaves under actual load conditions.

Key capabilities to optimize
infrastructure costs with load testing
Modern load testing platforms offer more than just virtual user generation.

The following five capabilities enable engineering and platform teams to directly

address cloud cost challenges. Examples from Gatling Enterprise Edition illustrate

how these concepts can be applied in practice.

04

OPTIMIZING CLOUD INFRASTRUCTURE COSTS WITH LOAD TESTING

Generate realistic load patterns to reveal

hidden inefficiencies

Benefit: Understand how your system behaves under realistic user conditions,

not synthetic extremes.

Realistic load modeling is the foundation of meaningful cost and performance insights.
Before production traffic arrives, teams can run controlled tests that reproduce actual
usage behaviors, such as:

Baseline steady states (e.g., average daily traffic).

Gradual ramps to mimic organic growth.

Traffic spikes that stress autoscaling and queuing systems.

Sustained plateaus to observe long-term resource consumption.

By progressively increasing virtual users and observing response times, error rates,
and resource utilization, teams can pinpoint the exact load levels where performance
starts degrading or costs accelerate sharply.

This allows you to refine autoscaling thresholds, right-size clusters, or optimize
database connections before production users are impacted.

Gatling Enterprise Edition supports sophisticated injection profiles (ramps, spikes, plateaus, and custom
scenarios) enabling teams to reproduce realistic load shapes that match expected traffic patterns.

05

OPTIMIZING CLOUD INFRASTRUCTURE COSTS WITH LOAD TESTING

JS TS JAVA KOTLIN SCALA POSTMAN

1

2

3

4

5

6

7

8

9

10

11

12

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29

const
switch
case return

case return

case return

case return

case return

case return
default return

 injectionProfile = (scn) => {

 (testType) {

 :
scn.injectOpen(incrementUsersPerSec(vu).times(4).eachLevelLa
sting({ amount: duration, unit:
}).separatedByRampsLasting(4).startingFrom(10));

 :
scn.injectOpen(constantUsersPerSec(vu).during({ amount:
duration, unit: }));

 :
scn.injectOpen(stressPeakUsers(vu).during({ amount:
duration, unit: }));

 :
scn.injectOpen(rampUsersPerSec(0).to(vu).during({ amount:
duration, unit: }));

 :
scn.injectOpen(rampUsersPerSec(0).to(vu).during({ amount:
ramp_duration, unit: }),
constantUsersPerSec(vu).during({ amount: duration, unit:

 }));

 : scn.injectOpen(atOnceUsers(1));

 : scn.injectOpen(atOnceUsers(vu));

 }

};

"capacity"

"minutes"

"soak"

"minutes"

"stress"

"minutes"

"breakpoint"

"minutes"

"ramp-hold"

"minutes"

"minutes"

"smoke"

Scale load generation across regions and services

Benefit: Test distributed architectures the way they will actually be used in

production.

For global applications or microservices-based systems, generating load from a single

location isn’t enough. Network latencies, regional routing, and service boundaries can

create bottlenecks that only appear under distributed, high-scale conditions.

By running load generators in multiple regions simultaneously, teams can:

Identify geo-specific bottlenecks (e.g., slow routing through a specific region).

Validate multi-region autoscaling behaviors.

Reproduce complex traffic topologies, such as API calls originating from mobile

users worldwide.

Measure the cost impact of scaling distributed services under real conditions.

Gatling Enterprise Edition enables distributed load generation, letting teams orchestrate tests across
multiple load generators and regions to mimic real-world, large-scale user traffic.

06

OPTIMIZING CLOUD INFRASTRUCTURE COSTS WITH LOAD TESTING

Track cost and performance regressions over time

Benefit: Make infrastructure tuning a continuous, data-driven process.

Cost inefficiencies often creep in gradually. A new feature might increase API call

volume, or a database query might grow more expensive over time. These regressions

are easy to miss without longitudinal visibility.

Regularly scheduled load tests (daily, weekly, or aligned with release cycles) create a

performance and cost baseline. By comparing successive runs, teams can detect:

By running load generators in multiple regions simultaneously, teams can:

Slower response times under the same load → potential performance regressions.

Higher resource consumption for similar traffic → potential cost regressions.

Changes in scaling behavior → drift in autoscaling configurations or architecture.

This requires consistent test naming, controlled environments, and clear comparison

methodologies. Run-to-run comparison tools are essential to separate real

regressions from expected variability.

Gatling Enterprise Edition provides Run Trends and Run Comparison features. Teams can overlay
multiple test results, visualize percentile response times and throughput over time, and detect
regressions quickly.

07

OPTIMIZING CLOUD INFRASTRUCTURE COSTS WITH LOAD TESTING

Connect performance metrics with infrastructure behavior

Benefit: Correlate application performance under load with underlying

infrastructure signals to uncover hidden waste.

Load testing generates rich performance data: response times, error rates,

throughput, connection metrics, and more. However, without correlating these with

infrastructure and APM data, the picture remains incomplete.

By integrating load testing with APM platforms (e.g., Datadog, Dynatrace), teams can

correlate:

Spikes in latency with CPU or memory saturation on specific services.

Scaling delays with slow pod scheduling or delayed capacity provisioning.

Connection failures with network or TLS bottlenecks.

These correlations reveal inefficient scaling behaviors (for example, autoscaling

rules that spin up compute after latency has already spiked) or components that are

over-provisioned relative to their actual load.

Gatling Enterprise Edition integrates with leading APM tools, enabling teams to view load test results
alongside infrastructure telemetry in real time.

08

OPTIMIZING CLOUD INFRASTRUCTURE COSTS WITH LOAD TESTING

Validate cost thresholds automatically

Benefit: Prevent cost and performance regressions from reaching production
through automated gates.

Manual review of load test results doesn’t scale. For FinOps practices to be
sustainable, cost and performance validations must be automated. This is where
assertions become powerful.

Assertions allow teams to define quantitative thresholds, such as:

“P95 latency must remain below 500 ms at 10,000 concurrent users.”

“The error rate must stay under 1 % for all endpoints.”

“Throughput for key transactions must stay within an expected range.”

If a load test exceeds these thresholds, the pipeline can automatically fail or flag the
issue. Over time, these thresholds can be tied not only to performance but also to
cost projections: for example, rejecting configurations that trigger unnecessary scale-
ups at low loads.

Gatling Enterprise Edition supports detailed assertions that can be used to gate CI/CD pipelines,
ensuring that only configurations meeting defined SLOs and cost targets proceed.

09

OPTIMIZING CLOUD INFRASTRUCTURE COSTS WITH LOAD TESTING

1

2

3

4

5

6

7

8

9

10

11

12

13 
14 
15 
16 
17 

// Assert that the max response time of all requests is less than
100 ms

// Assert that every request has no more than 5% of failing
requests

// Assert that the percentage of failed requests named "MyRequest"
in the group "MyGroup" is exactly 0 %

// Assert that the rate of requests per seconds for the group
"MyGroup"

setUp scn injectionProfile

setUp scn injectionProfile
forAll

setUp scn injectionProfile
details

setUp scn injectionProfile
details

(.injectOpen())

 .assertions(global().responseTime().max().lt());

(.injectOpen())

 .assertions(().failedRequests().percent().lte());

(.injectOpen())

 .assertions(("MyGroup",
"MyRequest").failedRequests().percent().is());

(.injectOpen())

 .assertions(("MyGroup").requestsPerSec().between(

));

100

5.0

0.0

100.0,

1000.0

Institutionalize cost-efficient testing practices

Benefit: Make cost optimization part of engineering culture, not one-off audits.

Even the best tools are ineffective without disciplined practices. Mature organizations

implement several practices to ensure load testing informs cost decisions systematically:

Source-controlled test definitions: Storing simulations in Git ensures reproducibility

and version control.

Configuration-as-Code:Defining packages and simulations as code allows

automated deployment, auditing, and rollback of test configurations.

Clear run naming conventions: Meaningful test names (e.g., api-checkout-baseline-

v3) make historical analysis and run comparisons easier.

Scheduled baseline tests: Weekly or pre-release runs to detect regressions early.

Centralized result sharing: Dashboards or shared links so leadership and finance

teams can see trends without deep technical tooling.

These practices make load testing an integral part of platform engineering and FinOps,

not an isolated QA activity.

Gatling Enterprise Edition supports Build-from-Git pipelines, Configuration-as-Code for packages and
simulations, and easy run labeling. These capabilities help teams industrialize their testing workflows.

10

OPTIMIZING CLOUD INFRASTRUCTURE COSTS WITH LOAD TESTING

Cloud package

storage

GATLING

ENTERPRISE PLATFORM

USER

YOUR

INFRASTRUCTURE

Private package

storage

System under test

Virtual Machine

Virtual Machine

Virtual Machine

Virtual Machine
Virtual Machine

Spawn / Terminate

on demand

Virtual Machine

Virtual Machine

Virtual Machine

Virtual Machine
Virtual Machine

Control

Plane Container STORE PACKAGE

BUILD FROM GITUPLOAD PACKAGE

DOWNLOAD PACKAGE

OUTBOUND

ACCESS

Download
Gatling Binaries

Upload

real-time metrics

Register

& pull for work

cloud.gatling.io

api.gatling.io

Download

package

Upload

package

Practical test scenarios to optimize cloud costs

Load testing isn’t just about resilience,it’s also a powerful lever to uncover

infrastructure inefficiencies and reduce cloud waste. Below are six Gatling

Enterprise Edition test scenarios that platform and engineering teams can easily

launch to support FinOps goals.

11

OPTIMIZING CLOUD INFRASTRUCTURE COSTS WITH LOAD TESTING

Autoscaling spike test

Goal: Validate how fast and efficiently autoscaling
responds to sudden surges

Peak capacity ramp-up Test

Pre-release cost regression test

 Off-hours idle load test

Multi-region load distribution test

Goal: Identify the precise load at which your system
starts to degrade.

Goal: Catch cost-impacting performance changes before
deployments go live.

Goal: Detect resources that remain active unnecessarily
during low-traffic periods.

Goal: Understand the cost and performance implications
of serving traffic from multiple regions.

Scenario: Gradually ramp virtual users from baseline to
peak and beyond, monitoring latency, error rates, and
resource utilization.

Scenario: Launch distributed load tests from various
geographic regions to simulate global user behavior.

Scenario: Run very light constant loads at night or on
weekends to observe autoscaling down behavior.

Scenario: Launch distributed load tests from various
geographic regions to simulate global user behavior.

Baseline steady-state test

Goal: Measure real infrastructure usage under normal
conditions.

Scenario: Use spike injection profiles from multiple
regions to simulate flash traffics

FinOps impact: Enables evidence-based sizing for peak
traffic periods, avoiding expensive “just-in-case”
provisioning.

FinOps impact: Prevents silent cost regressions (e.g.,
new features that increase backend load) from reaching
production.

FinOps impact: Uncovers opportunities to automate
shutdowns or scale-down schedules for non-production
environments.

FinOps impact: Helps optimize regional placement,
routing strategies, and autoscaling configurations to
reduce latency and unnecessary cross-region traffic
costs.

Scenario: Run a constant user load that mirrors average
daily traffic in a staging or pre-production environment.

FinOps impact: Reveals scaling delays and
overreactions, helping teams fine-tune rules to minimize
both wasted capacity and degraded performance.

FinOps impact: Highlights oversized environments and
idle capacity that can be reduced without affecting user
experience.

Pro Tip: Start by implementing 1–2 of these scenarios for your most critical services. Document baseline
results and use Gatling Enterprise Edition’s trend and comparison features to track improvements over time.
This structured approach turns load testing into a FinOps feedback loop, not just a one-time exercise.

Choosing the right platform
for modern load testing

OPTIMIZING CLOUD INFRASTRUCTURE COSTS WITH LOAD TESTING

When performance matters, your load testing platform becomes mission-critical. The complexity of
today’s distributed systems, global user bases, and rapid release cycles requires more than just
generating virtual users, it demands precision, scale, and deep integration with engineering workflows.

Gatling Enterprise Edition is designed to meet these demands. It provides a complete, production-grade
platform built to help teams analyze faster, collaborate better, automate with confidence, and test at any
scale. Its capabilities are structured around five core pillars that support the entire performance
engineering lifecycle:

1

2

3

4

5

6

7

8

9

10

11

12

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29

import from

import from

export default

const

 const =

Define

{ , , }
"@gatling.io/core";

{ } " ";

 simulation((setUp) => {

 httpProtocol = http

 .baseUrl(" ")

 .acceptHeader(" ")

 .userAgentHeader(

 "

"

);

 scn
scenario(" ").exec(http(" ").get(" "));

 // injection profile and execute the test

 setUp(scn.injectOpen(constantUsersPerSec(2).during(60)))

 .protocols(httpProtocol);

});

constantUsersPerSec scenario simulation

http @gatling.io/http

 // Define HTTP configuration

 // Define scenario

https://api-ecomm.gatling.io
application/json

Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/134.0.0.0
Safari/537.36

Scenario Session /session

12

Analyze smarter

& act faster
Gain real-time visibility with dashboards, trend
comparisons, and actionable insights.

Unlock

automations
Trigger simulations via CI/CD or API, apply stop
criteria, and gate releases with performance
thresholds.

Deploy load generators anywhere
Run tests from Gatling managed regions, your
cloud, or on-prem.

Create tests

your way
Build tests via code, low-code, or no-code,
import Postman, script in JS/TS or Java, or design
visually.

Collaborate & share

results easily
Use RBAC, SSO, quotas, and shared reports.
Share results via Slack, Teams, or Jira.

Gatling is the leading solution for modern load testing, enabling developers and
organizations to deliver fast, reliable applications at scale.

With its powerful open-source and enterprise platforms, Gatling empowers teams
to test APIs, microservices, and web apps in real-world conditions.

Trusted by thousands of companies worldwide, Gatling is the performance
backbone for development, QA, and DevOps teams building the next generation
of software.

Whether you’re scaling APIs, migrating to the cloud, or handling flash traffic
spikes, Gatling helps you deliver fast, reliable performance.

DATASHEET

Ready to evaluate Enterprise Edition?Ready to evaluate Enterprise Edition?

Whether you’re scaling APIs, migrating to the cloud, or handling flash
traffic spikes, Gatling helps you deliver fast, reliable performance.

Talk to an expert

https://gatling.io/book-a-demo?utm_source=techpager

