
2025

Scaling load testing  
across the enterprise
How to make performance testing everyone’s job, 
and scale with confidence using Gatling

EBOOK

Scaling load testing across the enterprise

...And how to avoid them

Shift left: Bring performance testing earlier in the dev cycle

Test as code: Treat performance tests like real software — versionable, reviewable, reusable 

Automate everything: CI/CD integration isn’t optional 

Build a culture of ownership: Developers, QA, and SREs must all play a role 

Eliminate infra bottlenecks: Don’t let test setup or load generators block anyone 

Standardize, but stay flexible: Use shared platforms and practices, not one-size-fits-all mandates

Gatling Enterprise Edition supports all of this by design. It removes the infrastructure burden, integrates
cleanly into developer workflows, and gives teams the visibility and control they need to test with
confidence.

Let’s break them down.

Common blockers for organizations that try to scale...

Siloed and late testing: performance tests only happen right before a big release

Local limits: with open-source solutions, you quickly hit CPU limits on a single machine.

CI/CD friction: Your functional tests are automated, but performance tests aren’t.

 Inconsistent tools and practices: Different teams use different tools, performance remains a black box.

 No visibility or governance: Stakeholders don’t know if a system is ready for scale.

01

Performance testing used to be a one-off activity — something a specialized team did before a major
release, often with brittle tooling and limited visibility. That model doesn’t hold up anymore.

Today, systems are distributed, releases happen daily, and user expectations are unforgiving.  
A performance regression in one service can ripple through your platform. A missed slowdown can cost
conversions, support tickets, or brand trust.

That’s why scaling load testing across the organization is no longer a nice-to-have. You need a strategy
where every team contributes to performance, and where infrastructure, tooling, and culture support
testing at scale.

The good news? It’s absolutely possible — with the right workflows, governance, and tooling.

This guide shows you how to get there, with a focus on test-as-code, automation, collaboration, and
platform-level tooling. And it shows you how Gatling Enterprise Edition helps you implement that vision
without adding complexity.

Scale with test as code
Load tests are too important to live in fragile UIs or out-
of-date XML configs. The best way to scale testing is to
treat it like code.

With Gatling, your test scenarios are written in code
(JavaScript, Java, Scala, or Kotlin), stored in Git, and
versioned like everything else. That means:

Developers can reuse libraries, share setup logic, and
run tests locally

Teams can code review load tests like any other
change

Changes to load profiles, SLAs, or endpoints are
tracked automatically

Test scripts can be templated and reused across
projects

This ensures repeatability, transparency, and version
control across teams.

With Gatling Enterprise Edition, you keep this test-as-
code model — but gain team-level control, CI integration,
and distributed execution at scale.

Use a shared testing platform
Large organizations succeed when they centralize
infrastructure but decentralize usage.

Use a common execution platform, such as Gatling
Enterprise Edition, that provides:

Distributed and scalable load generators

Quotas, RBAC, and audit logs

Shared result storage and reporting

Let every team run tests independently, within
governance boundaries.

This approach avoids tool sprawl while enabling self-
service and consistent standards across the
organization.

Tips to optimize your load tests  
with Gatling Enterprise Edition

02

Scaling load testing across the enterprise

Integrate CI/CD to your pipeline
If performance tests aren’t automated, they’ll be skipped.
Scaling means every team should be able to run
lightweight tests on every build or merge.

Gatling Enterprise Edition supports this natively. You can:

Trigger tests via CLI, GitHub Actions, GitLab, Jenkins,
or REST API

Define thresholds (e.g., “95th percentile response
time < 2s”)

Stop builds or alert the team if thresholds are
breached

Schedule large tests off-hours or after merges

Export results or compare them across builds and
releases

With these integrations in place, teams build
performance validation into their workflow, not as a
phase, but as a habit.

Establish common metrics  
and reporting standards

Different teams can use different tools — but they must
speak the same **performance language**.

Standardize your metrics and KPIs:

Use percentiles (P95, P99) instead of averages

Track error rate, throughput, and availability
consistently

Define clear SLAs and SLOs per service

Use standard naming conventions and tagging
across reports

Centralize dashboards and reporting for visibility.

Gatling Enterprise Edition offers customizable reports
and run comparisons, making cross-team performance
data **comparable, traceable, and actionable**.

Shift left to test early and often

The earlier you test, the cheaper it is to fix.

Make performance testing part of development by:

Running lightweight load tests on pull requests or
nightly builds

Teaching developers to write and run small scenarios
locally

Including performance checks in sprint demos or
“definition of done”

This embeds performance thinking into daily
development and helps teams catch regressions before
they reach staging or production.

Promote collaboration and shared
ownership

Performance testing is cross-functional by nature:

Developers handle scenario creation and early
feedback

QA/SDETs maintain coverage and assertions

SREs manage infrastructure and monitoring

Product and business teams consume insights

Everyone contributes; nobody is the bottleneck.

Gatling Enterprise Edition makes this easy with project
spaces, usage quotas, and team permissions, enabling
collaboration without conflict.

03

Scaling load testing across the enterprise

Distribute load your load across locations

Scaling from 1,000 to 100,000 users shouldn’t mean more
infrastructure headaches.

Gatling Enterprise Edition removes the pain with:

Distributed load generation across managed or
private locations

One-click test launches and automatic resource
scaling

Built-in queuing, quotas, and shutdown rules

You focus on writing and analyzing tests — not
configuring virtual machines or managing regions.

Integrate with observability and APM

Performance testing shouldn’t exist in a vacuum.

Integrate your test results with your observability stack
to understand end-to-end behavior.

Correlate Gatling metrics with logs, traces, and APM
data

Detect root causes (CPU spikes, database latency,
network timeouts) faster

Feed insights into your incident postmortems and
dashboards

This tight integration helps SRE and DevOps teams
connect load results with production realities, turning
performance testing into proactive reliability
engineering.

On Gatling Enterprise Edition, you can add your load testing metrics to your observability
dashboards, thanks to direct integration with Datadog and Dynatrace.

Ensure production-like environments

If your test environment doesn’t reflect production, your
results don’t matter.

To scale performance testing across teams, you need:

Environments that mirror production topology,
including autoscaling and load balancers

Datasets that match production volume and shape,
via masked or synthetic data

Network variability, to simulate real regional latency

Scenarios based on real user behavior, not static
loops

Gatling Enterprise Edition supports hybrid deployments
— you can run load generators inside your VPC or private
cloud while still using the hosted UI.

That gives you realistic conditions, security, and
flexibility.

Governance and consistency

Autonomy doesn’t mean chaos.

Set lightweight governance that balances freedom  
and control:

Define clear roles, permissions, and quotas

Standardize test naming conventions and tagging

Run periodic performance reviews per release or
sprint

Gatling Enterprise Edition simplifies this with built-in
RBAC, audit logs, and team-level resource limits.

Consistency keeps testing safe and scalable without
slowing teams down.

04

Scaling load testing across the enterprise

Build a culture of continuous improvement

Scaling load testing isn’t a one-time project — it’s an
ongoing practice.

Document lessons learned from each test

Compare results over time and track regressions

Celebrate improvements publicly to reinforce the
culture

With Gatling Enterprise Edition, you can easily compare
runs, measure trends, and share wins across teams.

Performance becomes a shared success, not just a
technical metric.

On Gatling Enterprise Edition, you can directly assign roles, create team, and allocate
credits in the interface.

Do’s and don’ts of load testing

Scaling load testing across the enterprise

Adding load tests to your CI/CD pipeline is one of the best ways to prevent performance regressions
from slipping into production, but timing is everything and not all tests should be run in CI.

Run smoke tests on every build
Short, lightweight tests that validate basic
performance (e.g., response times under small
load). These catch regressions early without
slowing the pipeline.

Schedule full-scale load tests regularly
Daily or nightly runs can simulate realistic traffic
and catch issues before release, without blocking
developer flow.

Test critical user journeys
Focus on checkout, login, API endpoints, or
anything that’s business-critical. Not everything
needs to be load-tested every build.

Automate pass/fail criteria
Define thresholds for response time, error rates,
and percentiles (e.g., 95th/99th). Fail builds when
performance drops.

Don’t run heavy tests on every PR
You’ll slow down the pipeline and annoy
developers.

Don’ts

Don’t skip trend analysis
A single failed run isn’t enough; look at patterns
over time to catch gradual regressions.

Don’t forget environment parity
CI tests should run on an environment that’s close
to production; otherwise results can mislead.

Do’s

05

Choosing the right platform
for modern load testing

Scaling load testing across the enterprise

When performance matters, your load testing platform becomes mission-critical. The complexity of
today’s distributed systems, global user bases, and rapid release cycles requires more than just
generating virtual users, it demands precision, scale, and deep integration with engineering workflows.

Gatling Enterprise Edition is designed to meet these demands. It provides a complete, production-grade
platform built to help teams analyze faster, collaborate better, automate with confidence, and test at any
scale. Its capabilities are structured around five core pillars that support the entire performance
engineering lifecycle:

1

2

3

4

5

6

7

8

9

10

11

12

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29

import from

import from

export default

const

 const =

Define

{ , , }
"@gatling.io/core";

{ } " ";

 simulation((setUp) => {

 httpProtocol = http

 .baseUrl(" ")

 .acceptHeader(" ")

 .userAgentHeader(

 "

"

);

 scn
scenario(" ").exec(http(" ").get(" "));

 // injection profile and execute the test

 setUp(scn.injectOpen(constantUsersPerSec(2).during(60)))

 .protocols(httpProtocol);

});

constantUsersPerSec scenario simulation

http @gatling.io/http

 // Define HTTP configuration

 // Define scenario

https://api-ecomm.gatling.io
application/json

Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/134.0.0.0
Safari/537.36

Scenario Session /session

06

Analyze smarter and act faster
Gain real-time visibility with dashboards, trend
comparisons, and actionable insights.

Unlock automation
Trigger simulations via CI/CD or API, apply stop
criteria, and gate releases with performance
thresholds.

Deploy load generators anywhere
Run tests from Gatling managed regions, your
cloud, or on-prem.

Create tests your way
Build tests via code, low-code, or no-code,
import Postman, script in JS/TS or Java, or design
visually.

Collaborate and share results easily
Use RBAC, SSO, quotas, and shared reports.
Share results via Slack, Teams, or Jira.

Gatling is the leading solution for modern load testing, enabling developers and
organizations to deliver fast, reliable applications at scale.

With its powerful open-source and enterprise platforms, Gatling empowers teams
to test APIs, microservices, and web apps in real-world conditions.

Trusted by thousands of companies worldwide, Gatling is the performance
backbone for development, QA, and DevOps teams building the next generation
of software.

Whether you’re scaling APIs, migrating to the cloud, or handling flash traffic
spikes, Gatling helps you deliver fast, reliable performance.

DATASHEET

Ready to evaluate Enterprise Edition?Ready to evaluate Enterprise Edition?

Whether you’re scaling APIs, migrating to the cloud, or handling flash
traffic spikes, Gatling helps you deliver fast, reliable performance.

Talk to an expert

https://gatling.io/book-a-demo?utm_source=techpager

