o EB0OK

O R e e e e e e
...........................
....................
.................

o SCELING LO=0 TESTIMNG RCROES THE ENTERFPRISE

Performance testing used to be a one-off activity — something a specialized team did before a major
release, often with brittle tooling and limited visibility. That model doesn’t hold up anymore.

Today, systems are distributed, releases happen daily, and user expectations are unforgiving.
A performance regression in one service can ripple through your platform. A missed slowdown can cost
conversions, support tickets, or brand trust.

That's why scaling load testing across the organization is no longer a nice-to-have. You need a strategy
where every team contributes to performance, and where infrastructure, tooling, and culture support
testing at scale.

The good news? It's absolutely possible — with the right workflows, governance, and tooling.

| This guide shows you how to get there, with a focus on test-as-code, automation, collaboration, and
platform-level tooling. And it shows you how Gatling Enterprise Edition helps you implement that vision
| without adding complexity.

Common blockers for organizations that try to scale...
« Siloed and late testing: performance tests only happen right before a big release
« Local limits: with open-source solutions, you quickly hit CPU limits on a single machine.
» CI/CD friction: Your functional tests are automated, but performance tests aren't.
 Inconsistent tools and practices: Different teams use different tools, performance remains a black box.

» No visibility or governance: Stakeholders don’t know if a system is ready for scale.

...And how to avoid them

« Shift left: Bring performance testing earlier in the dev cycle

o Test as code: Treat performance tests like real software — versionable, reviewable, reusable

o Automate everything: CI/CD integration isn’t optional

o Build a culture of ownership: Developers, QA, and SREs must all play a role

« Eliminate infra bottlenecks: Don't let test setup or load generators block anyone

» Standardize, but stay flexible: Use shared platforms and practices, not one-size-fits-all mandates
Gatling Enterprise Edition supports all of this by design. It removes the infrastructure burden, integrates
cleanly into developer workflows, and gives teams the visibility and control they need to test with

confidence.

Let's break them down.

Catling

o SCALING LO=0 TESTING RCROSS THE ENTERPRISE

Tips to optimize your load tests
with Gatling Enterprise Edition

<> <
Scale with test as code Use a shared testing platform
Load tests are too important to live in fragile Uls or out-

of-date XML configs. The best way to scale testing is to
treat it like code.

Large organizations succeed when they centralize
infrastructure but decentralize usage.

Use a common execution platform, such as Gatling

With Gatling, your test scenarios are written in code Enterprise Edition, that provides:

(JavaScript, Java, Scala, or Kotlin), stored in Git, and

versioned like everything else. That means: « Distributed and scalable load generators

» Quotas, RBAC, and audit logs

» Developers can reuse libraries, share setup logic, and « Shared result storage and reporting

run tests locally

o Teams can code review load tests like any other
change

o Changes to load profiles, SLAs, or endpoints are
tracked automatically

o Test scripts can be templated and reused across
projects

Let every team run tests independently, within
governance boundaries.

This approach avoids tool sprawl while enabling self-
service and consistent standards across the
organization.

This ensures repeatability, transparency, and version
control across teams.

With Gatling Enterprise Edition, you keep this test-as-
code model — but gain team-level control, Cl integration,
and distributed execution at scale.

A

Establish common metrics
and reporting standards

Different teams can use different tools — but they must
speak the same **performance language**.

Standardize your metrics and KPIs:

Use percentiles (P95, P99) instead of averages
ck error rate, throughput, and availability

SLAs and SLOs per service
aming conventions and tagging

o SCALING LO=0 TESTING RCROSS THE ENTERPRISE

©

Shift left to test early and often

The earlier you test, the cheaper it is to fix.
Make performance testing part of development by:

» Running lightweight load tests on pull requests or
nightly builds

« Teaching developers to write and run small scenarios
locally

« Including performance checks in sprint demos or
“definition of done”

This embeds performance thinking into daily
development and helps teams catch regressions before
they reach staging or production.

~;

Distribute load your load across locations

Scaling from 1,000 to 100,000 users shouldn’t mean more
infrastructure headaches.

Gatling Enterprise Edition removes the pain with:

» Distributed load generation across managed or
private locations
* One-click test launches and automatic resource
caling

euing, quotas, and shutdown rules

alyzing tests — not
anaging regions.

0%

Promote collaboration and shared
ownership

Performance testing is cross-functional by nature:

» Developers handle scenario creation and early
feedback

* QA/SDETs maintain coverage and assertions

» SREs manage infrastructure and monitoring

» Product and business teams consume insights

Everyone contributes; nobody is the bottleneck.

Gatling Enterprise Edition makes this easy with project
spaces, usage quotas, and team permissions, enabling
collaboration without conflict.

@

Integrate with observability and APM

Performance testing shouldn't exist in a vacuum.

Integrate your test results with your observability stack
to understand end-to-end behavior.

« Correlate Gatling metrics with logs, traces, and APM
data

« Detect root causes (CPU spikes, database latency,
network timeouts) faster

» Feed insights into your incident postmortems and
dashboards

This tight integration helps SRE and DevOps teams
connect load results with production realities, turning
performance testing into proactive reliability
engineering.

o SCALING L2300 TESTING RCROSS THE EMTERFPRISE

= O

Ensure production-like environments Governance and consistency

If your test environment doesn't reflect production, your Autonomy doesn't mean chaos.
results don’t matter.

Set lightweight governance that balances freedom

To scale performance testing across teams, you need: and control:
« Environments that mirror production topology,
including autoscaling and load balancers « Define clear roles, permissions, and quotas
» Datasets that match production volume and shape, « Standardize test naming conventions and tagging
via masked or synthetic data « Run periodic performance reviews per release or
» Network variability, to simulate real regional latency sprint

e Scenarios based on real user behavior, not static

loops Gatling Enterprise Edition simplifies this with built-in

)) ») RBAC, audit logs, and team-level resource limits.
Gatling Enterprise Edition supports hybrid deployments

— you can run load generators inside your VPC or private Consistency keeps testing safe and scalable without
cloud while still using the hosted Ul. slowing teams down.

That gives you realistic conditions, security, and
flexibility.

®

Build a culture of continuous improvement

Scaling load testing isn't a one-time project —it's an
ongoing practice.
o Document lessons learned from each test
» Compare results over time and track regressions
o Celebrate improvements publicly to reinforce the
culture

With Gatling Enterprise Edition, you can easily compare
runs, measure trends, and share wins across teams.

Performance becomes a shared success, not just a
technical metric.

Qs by Team Name Rows per page: 10 1-4 of 4

TEAM NAME « = MEMBERS $ ¥ CONSUMED CREDITS QUOTA RELATIONS

API Team 1 member 0 z @ i B i & See members |

Default team 2 members = 2 @ . © See members |

PerformanceTeam 1 member i3 3 B © See members |

QA Team 1 member | <& See members |

On Gatling Enterprise Edition, you can directly assign roles, create team, and allocate
credits in the interface.

Latling 04

o SCRLING LORD TESTING RCROSS THE EMTERPRISE

Do’s and don’ts of load testing

Adding load tests to your CI/CD pipeline is one of the best ways to prevent performance regressions
from slipping into production, but timing is everything and not all tests should be run in CI.

Do’s

X\

Run smoke tests on every build Don’t run heavy tests on every PR
Short, lightweight tests that validate basic You'll slow down the pipeline and annoy
performance (e.g., response times under small developers.

load). These catch regressions early without
slowing the pipeline.

o [0

Don't skip trend analysis
Schedule full-scale load tests regularly . . .

A single failed run isn’t enough; look at patterns
Daily or nightly runs can simulate realistic traffic over time to catch gradual regressions.

and catch issues before release, without blocking
developer flow.

R
. .

Don't forget environment parity
Test critical user journeys Cl tests should run on an environment that’s close
Focus on checkout, login, APl endpoints, or to production; otherwise results can mislead.

anything that’s business-critical. Not everything
needs to be load-tested every build.

Automate pass/fail criteria

Define thresholds for response time, error rates,
and percentiles (e.g., 95th/99th). Fail builds when
performance drops.

Ciatling

o SCARLING LO=D TESTING RCROSS ThHE EMTERPARISE

Choosing the right platform
for modern load testing

When performance matters, your load testing platform becomes mission-critical. The complexity of
today’s distributed systems, global user bases, and rapid release cycles requires more than just
generating virtual users, it demands precision, scale, and deep integration with engineering workflows.

Gatling Enterprise Edition is designed to meet these demands. It provides a complete, production-grade
platform built to help teams analyze faster, collaborate better, automate with confidence, and test at any
scale. Its capabilities are structured around five core pillars that support the entire performance

engineering lifecycle:

Analyze smarter and act faster

Gain real-time visibility with dashboards, trend
comparisons, and actionable insights.

020

Unlock automation

Trigger simulations via CI/CD or API, apply stop
criteria, and gate releases with performance
thresholds.

F
L.

Deploy load generators anywhere

Run tests from Gatling managed regions, your
cloud, or on-prem.

st

%

Create tests your way

Build tests via code, low-code, or no-code,
import Postman, script in JS/TS or Java, or design
visually.

*

Collaborate and share results easily

Use RBAC, SSO, quotas, and shared reports.
Share results via Slack, Teams, or Jira.

Il SEBGUNRP Erterprise 1= Simuations D StrsssTest - #10 26/01/2024 16:4029

Stress-Test

SRE/DavODE o example AdvancedSimuiation
& I o

x devl_v3.10.9 o

Ciatling

11 Europe - Dublin and 1 mare (

43:32 > 26 jarw. 2020, 19:44:20 | 52:

© oefine your scenario

W summary @

[v] o atigiomosucs ’

[or] mostocommgateg oproaucsz o

“« « a a » » [[Post v | nupsitecomm gating ot v o'
L

0 | I + Addron

® 3 Responses per Second by Status

Soak test

sv kv B Response Time Distr.. 8V @ Lnear {

- Tating

Gatling is the leading solution for modern load testing, er
organizations to deliver fast, reliable applications at scale

With its powerful open-source and enterprise platfor

of software.-

Whether you're scaling APIs, migrating to
spikes, Gatling helps you deliver fast, re

Talk to an expert >

Whether)'/of,l'ré sbaiiné APIS, |
traffic spikes, Gatling helps

https://gatling.io/book-a-demo?utm_source=techpager

