
2025

Top load testing metrics to follow
For Performance Engineering, Platform, and QA Teams

DATASHEET

11

Top load testing metrics to follow

1. Requests and Responses per Second

2. Response Time Percentiles (P95 / P99)

What it is

What it is

What it reveals

What it reveals

Pro tips

Pro tips

Measures latency for the slowest users (typically the
95th and 99th percentiles) rather than averages.

Tracks the volume of requests sent to the system and
responses returned every second during a load test.

Percentiles expose tail latency, which is what real users
experience in worst-case scenarios. Average response
times can mask these spikes entirely. A rising P99 with a
stable mean is a classic early warning sign of a regression.

Throughput trends reveal system capacity under increasing
load. If the request curve continues rising while the response
curve plateaus or drops, it usually signals thread pool
exhaustion, backend saturation, or queue overflows.

Always track P95 and P99 during
ramp-up and peak phases. Tail
latency is what breaks SLAs and
drives churn, not averages.

Overlay throughput with
concurrent users and error rates
to identify the exact inflection
point where performance starts
degrading.

Modern teams need more than pass/fail results, they need rich, contextualized metrics to diagnose
bottlenecks and validate resilience at scale. Gatling Enterprise Edition gives you the full picture, from
request-level behavior to network and infrastructure signals.

11

Top load testing metrics to follow

3. Errors per Second & Responses by Status Code

4. Virtual User Metrics (Arrival, Termination & Concurrency)

What it is

What it is

What it reveals

What it reveals

Pro tips

Pro tips

Tracks how many users start (arrival), finish (termination),
and are active simultaneously (concurrency) during the
test.

Monitors the volume of errors (e.g. 4xx, 5xx) per second
and breaks down responses by HTTP status codes.

These metrics give a clear picture of load patterns and
system response. Diverging arrival and termination curves
often indicate slow transactions, timeouts, or abandoned
sessions.

Error spikes correlate strongly with system instability. For
example, 5xx surges after peak load indicate capacity or
dependency failures, while 4xx growth may reflect routing
or client issues.

Use concurrency alongside
response percentiles to pinpoint
capacity ceilings. Unexpected drops
in termination rate usually point to
blocking issues.

Slice errors by endpoint and
scenario to locate the root cause
quickly. A sudden 5xx spike
combined with flattening
throughput often indicates
backend collapse.

11

Top load testing metrics to follow

5. Group Duration Percentiles

6. TCP Connect Duration Percentiles

What it is

What it is

What it reveals

What it reveals

Pro tips

Pro tips

Measures the time taken to establish TCP connections
from the load generator to the system under test.

Measures the end-to-end duration of defined groups of
requests, typically mapped to user journeys or business
transactions (e.g. checkout, search, login).

Rising TCP connect times typically point to network or
infrastructure bottlenecks (e.g. load generator saturation,
exhausted connection pools, firewall limits) before
application performance visibly degrades.

Group metrics expose compounded latency across
multiple services and steps, which single request timings
can miss. A single slow API might not break SLAs, but
multiple small delays add up quickly.

Watch for increases in TCP connect
percentiles during ramp-up. If they
rise before response times do, the
issue is likely outside the app layer.

Use group percentiles to
benchmark real business flows.
This helps prioritize optimizations
that have the most customer
impact.

11

Top load testing metrics to follow

7. TLS Handshake Duration Percentiles

8. Load Generator Infrastructure Metrics (CPU & Heap)

What it is

What it is

What it reveals

What it reveals

Pro tips

Pro tips

Monitors CPU usage and memory consumption on the
load generators themselves to ensure the test
infrastructure can sustain the desired traffic.

Tracks the duration of SSL/TLS handshakes during
secure connection establishment.

If generators hit CPU or heap limits, they can become the
bottleneck, introducing artificial latency or failing to
maintain target injection rates.

Handshake latency often becomes significant at scale,
especially with CPU-heavy ciphers or certificate chain
issues. Sudden increases during high concurrency tests
can add unexpected overhead.

Always check generator health
before blaming the system under
test. Sustained CPU above 80% or
heap usage above 85% can skew
results dramatically.

Baseline TLS handshake times
early, and watch for spikes under
load. These are often invisible in
APM tools but noticeable in
Gatling’s client-side view.

Once you’ve established a strong foundation by tracking key load testing metrics,

the next step is to connect the dots between individual test results, long-term

trends, and production telemetry. This is where Gatling Enterprise Edition really

shines.

11

Top load testing metrics to follow

Observe trends over time

Correlate load testing with APM

& observability data

Load testing isn’t just about validating a single
release, it’s about understanding how your system
evolves under pressure. By analyzing performance
trends across multiple runs, teams can detect subtle
regressions, capacity drifts, or architectural
bottlenecks that might otherwise go unnoticed.

With Gatling Enterprise Edition’s built-in dashboards,
you can compare test runs side by side, track key
metrics over weeks or months, and spot performance
degradation before it turns into production incidents.
This historical view gives engineering and QA teams
the data they need to make informed, proactive
decisions instead of reacting after failures occur.

Performance metrics gain their full diagnostic power
when combined with infrastructure and application
telemetry. Gatling’s native integrations with Datadog
and Dynatrace allow you to overlay load testing data
with real-time observability signals from your production
environment.

This correlation helps teams pinpoint the exact cause of
slowdowns or errors: whether it’s inefficient code,
network saturation, database contention, or
infrastructure limits. It also aligns developers, SREs, and
QA teams around a single shared view of system
behavior, reducing friction and speeding up root-cause
analysis.

How to go further

If load testing matters,
your tool should too.
Your users demand speed and reliability, your load testing platform must deliver the same, with power,
precision, and scalability. Gatling Enterprise Edition offers a complete platform built for modern teams,
distributed systems, and real-world performance demands, aligned along five product pillars:

BUILD VS BUY

Analyze smarter

& act faster

Gain real-time visibility with dashboards, trend
comparisons, and actionable insights.

Unlock

automations

Trigger simulations via CI/CD or API, apply stop
criteria, and gate releases with performance
thresholds.

Deploy load generators anywhere

Run tests from Gatling managed regions, your
cloud, or on-prem.

Create tests

your way

Build tests via code, low-code, or no-code,
import Postman, script in JS/TS or Java, or design
visually.

Collaborate & share

results easily

Use RBAC, SSO, quotas, and shared reports.
Share results via Slack, Teams, or Jira.

1

2

3

4

5

6

7

8

9

10

11

12

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29

import from

import from

export default

const

 const =

Define

{ , , }
"@gatling.io/core";

{ } " ";

 simulation((setUp) => {

 httpProtocol = http

 .baseUrl(" ")

 .acceptHeader(" ")

 .userAgentHeader(

 "

"

);

 scn
scenario(" ").exec(http(" ").get(" "));

 // injection profile and execute the test

 setUp(scn.injectOpen(constantUsersPerSec(2).during(60)))

 .protocols(httpProtocol);

});

constantUsersPerSec scenario simulation

http @gatling.io/http

 // Define HTTP configuration

 // Define scenario

https://api-ecomm.gatling.io
application/json

Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/134.0.0.0
Safari/537.36

Scenario Session /session

07

Gatling is the leading solution for modern load testing, enabling developers and
organizations to deliver fast, reliable applications at scale.

With its powerful open-source and enterprise platforms, Gatling empowers teams
to test APIs, microservices, and web apps in real-world conditions.

Trusted by thousands of companies worldwide, Gatling is the performance
backbone for development, QA, and DevOps teams building the next generation
of software.

Whether you’re scaling APIs, migrating to the cloud, or handling flash traffic
spikes, Gatling helps you deliver fast, reliable performance.

DATASHEET

Ready to evaluate Enterprise Edition?Ready to evaluate Enterprise Edition?

Whether you’re scaling APIs, migrating to the cloud, or handling flash
traffic spikes, Gatling helps you deliver fast, reliable performance.

Talk to an expert

https://gatling.io/book-a-demo?utm_source=techpager

