e DATASHEET - - - oo



o THFES OF LOBRDO TESTING

Most teams run load tests. Few run the right traffic profile.

This datasheet explains 6 common load testing patterns, what each reveals, and how to reproduce
them in Gatling (JavaScript). It focuses on open workload models (user arrival rate). For closed
workload guidance and examples, reach out to us.

To make selection easier, the test patterns are grouped into three sections:

Validation - Scaling - Resilience

COhAPONERT WIRET T D2ES

injectOpen(...) Declares an open workload injection profile. Users are injected based on arrival
rate (users per second), not a fixed number of concurrent users.

atOnceUsers(users) Injects a fixed number of users immediately at time zero. Used for
smoke tests and fast validation.

constantUsersPerSec(rate).during(time) Inject users gradually over time

Linearly increases arrival rate from start to end users per second over
time. Used for ramp, breakpoint, or the ramp phase of ramp-hold
tests.

rampUsersPerSec(start).to(end).during(time)

stressPeakUsers(rate).during(time) Quickly reaches a high arrival rate and sustains it for time. Used to push the system
into overload conditions to expose failure behavior.

incrementUsersPerSec(step) Defines a stepwise increase in arrival rate. Each step increases the current rate by step
users per second. Used in capacity tests (stair-step curve).

.startingFrom(rate) Sets the baseline arrival rate before applying increments. In your capacity test, this is
the first plateau (example: 10 users per second).

_times(n) Repeats the increment pattern n times. In a capacity test, this defines the number of
steps (how many plateaus above baseline).

.eachLevelLasting(time) For step-based profiles, holds each arrival-rate plateau for a fixed duration. This
stabilizes the system at each step and makes measurements comparable.

.separatedByRampsLasting(time) Inserts ramp transitions between steps (instead of abrupt jumps). This avoids shock
effects and produces smoother scaling behavior.

.during(time) Specifies how long an injection phase lasts. Used for constant load, stress plateaus,
and linear ramps.

vu (variable) In next code snippets, vu represents the arrival rate or increment size (users per
second). It is not the number of concurrent users.

duration / ramp_duration These variables define the time window for holding a plateau (duration) or the time
window for ramping (ramp_duration). They shape the curve but do not change the
target arrival rate.




o LISLIOSTICN

Smoke test

Minimal traffic to verify scenario correctness Smoke test
and environment readiness before scaling.

Users Arrival Rate

When to use it
« Validate test setup end-to-end
(authentication, routing, data, dependencies)

» Sanity-check pre-merge or pre-pipeline
before heavier tests

« Confirm telemetry wiring (metrics visible,

dashboards populated, traces available) A
What it reveals

« Immediate functional failures (unauthorized
responses, server errors, timeouts)

« Environment misconfiguration (domain name
resolution, credentials, routing rules)

One immediate user arrival.
Used for fast validation, not for performance measurement.

» Missing instrumentation or broken telemetry
before load

Code example to reproduce this pattern scn.injectOpen(atOnceUsers(1));

Ramp-hold test

Ramp to a target arrival rate, then hold steady to

validate performance and service level compliance Ramp hold test
L Users Arrival Rate

under stable peak conditions.

When to use it
» Release validation or continuous integration
performance gating

« Confirm service level objectives at expected
peak traffic

o Compare baseline vs new release under
identical traffic shape

What it reveals

» Ramp behavior vs steady-state behavior
(warm-up, scaling stabilization)

« Whether performance stabilizes or continues
degrading under constant load

Ramp from O - vu users per second over ramp_duration,
then hold at vu users per second for duration.

» Regression signals compared to previous
baseline runs

Code example to reproduce this pattern scn.injectOpen(
rampUsersPerSec(0).to(vu).during({amount: ramp_duration, unit: "minutes"}),
constantUsersPerSec(vu) .during({ amount:duration, unit: "minutes"}));

Latling

)
—_



o SCARLING

Capacity test

A stepwise traffic increase with stabilized

plateaus to measure sustainable throughput Capacity test
and identify scaling limits.

Users Arrival Rate

When to use it
« Validate expected peak traffic under
controlled increments

« Measure scaling behavior (automatic scaling,
resource saturation, throughput ceilings)

» Establish a repeatable capacity baseline to
compare releases or infrastructure changes

What it reveals

« The traffic level where latency percentiles
(p95 and p99) start diverging

» Throughput ceilings and early saturation
thresholds (CPU, queues, connection pools,
load balancers and gateways)

Progressively increase the arrival rate in steps, holding
each level long enough for the system to stabilize and

« Non-linear scaling zones (automatic scaling reveal sustainable throughput limits.

delays, contention, backlog accumulation)

Code example to reproduce this pattern scn.injectOpen(incrementUsersPerSec(vu).times(4).eachLevellasting({ amount:
duration, unit: "minutes" }).separatedByRampsLasting(4).startingFrom(10));

Breakpoint test

A continuous ramp-up to determine the traffic
threshold where service level objectives break and
the system loses stability.

Breakpoint test

Users Arrival Rate

When to use it

e Find the maximum sustainable arrival rate (true
capacity limit)

« Quantify headroom and define a safe operating

range
 Validate infrastructure ceilings such as load

balancers, gateways, and database connection limits /

What it reveals

» The load level where service level objectives fail (p99
spikes, errors increase, throughput collapses)

+ Which layer saturates first (edge, gateway, service, or Linear ramp from O - vu users per second over duration.
dependency) Often paired with automatic stop criteria (error rate
« Whether automatic scaling can delay or prevent failure thresholds, percentile thresholds, time limits).
Code example to reproduce this pattern scn.injectOpen(

rampUsersPerSec(0).to(vu).during({amount: duration, unit: "minutes"}));

Latling

(]



e AESILIEMCE

Stress test

Sustained high arrival rate to push the system
beyond normal operating conditions and expose
failure modes under overload.

Stress test

Users Arrival Rate

When to use it
« Validate resilience beyond expected peak
traffic

« Observe failure behavior: error cliffs,
timeouts, and recovery dynamics

» Test protective mechanisms such as rate
limiting, backpressure, and circuit breakers

What it reveals

« Tail latency explosions (p99 and p99.9)
caused by contention and queueing

« Error cliffs and timeout cascades caused by
retries and overload

Sustained peak traffic at vu users per second for duration.

+ Stability limits under sustained saturation Designed to force saturation and observe failure behavior.
(CPU, database connections, network

throughput)

Code example to reproduce this pattern scn.injectOpen(
constantUsersPerSec(vu).during({amount: duration, unit: "minutes"}));

Soak test

A constant arrival rate sustained over time to
validate stability and detect slow degradation.

Soak test

Users Arrival Rate
When to use it

» Detect memory leaks or slow resource exhaustion

- Validate long-run stability under steady business-as-
usual traffic

« |dentify drift caused by cache eviction, background
jobs, or state accumulation

What it reveals

 Latency drift and tail degradation over time

» Slow-growing error rates and saturation trends

« Resource growth patterns leading to collapse (memory
pressure, connection pool exhaustion) Constant traffic at vu users per second for the full
duration.

Code example to reproduce this pattern scn.injectOpen(
constantUsersPerSec(vu) .during({amount: duration, unit: "minutes"}));

Latling 4



Quick selection guide

Use this table as a shortcut: each test pattern answers a different engineering question and reveals a different class of failure mo

scaling limits, or stability risks.

TEST TYPE MAIN QUESTION COMMON DURATION WHEN TO PERFORM
Smoke Does the scenario run end-to-end? 15-30 min Before any serious
performance testing
Ramp-Hold Do service level objectives hold at peak? 30 min Before production releas
/ after major updates
Capacity What is the maximum sustainable Several hours Before scaling decisions /
) (until failure) infrastructure changes
Breakpoint At which traffic level do we break? 1 hour Before a known high-
traffic event / product
launch
Stress How does the system behave under 2-3 hours Before a known high-
overload? traffic event / product
launch
Soak Does performance degrade over 24-72 hours Before production / after
time? major updates

Latling




Built to test any use case
or protocol, at scale

Gatling Enterprise Edition is a developer-first load testing platform for modern, high-scale
systems. It supports APIs, microservices, real-time protocols, and legacy tech across HTTP,
WebSockets, gRPC, and more.

Create tests with code, low-code, or no-code options. Integrate seamlessly into CI/CD
pipelines and APM tools to ensure resilience at any scale.

2%
Web
applications

Simulate user interactions and ensure

fast, reliable front-end performance
under load.

S

Cloud-based
infrastructures

Evaluate performance and resiliency of
cloud-native apps, especially after
migrations from on-premise to cloud
environments.

7
[

Microservices
architectures
Test internal service-to-service

communication and isolate
performance bottlenecks.

l

Mobile
applications
Reproduce mobile usage patterns

and variable network conditions for
realistic testing.

Catling

>
Public and private
APls

Validate your API performance,
latency, and error handling across high
concurrency.

SQL
databases
Measure query response times and

throughput under real-world usage
scenarios.

(R

loT systems
and protocols

Emulate device fleets and message
flows using MQTT, AMQP, and other
loT protocols.

&

LLM and Al-powered
APls

Evaluate Al inference latency and
ensure consistent performance for
high-volume requests.



Latling

Gatling is the leading solution for modern load testing, er
and organizations to deliver fast, reliable applications a

With its powerful open-source and enterprise platfor

of software. :

Whether you're scaling APIs, migrating to
spikes, Gatling helps you deliver fast, re

Talk to an expert >

Whether you're scaiiné APIS, '
traffic spikes, Gatling helps



https://gatling.io/book-a-demo?utm_source=techpager

