
2026

6 load testing patterns 

and what they reveal
A practical guide to choosing the right traffic curve 

in Gatling

DATASHEET



1

TYPES OF LOAD TESTING

Most teams run load tests. Few run the right traffic profile.



This datasheet explains 6 common load testing patterns, what each reveals, and how to reproduce 
them in Gatling (JavaScript). It focuses on open workload models (user arrival rate). For closed 
workload guidance and examples, reach out to us.



To make selection easier, the test patterns are grouped into three sections:



Validation → Scaling → Resilience

atOnceUsers(users)

rampUsersPerSec(start).to(end).during(time)

stressPeakUsers(rate).during(time)

incrementUsersPerSec(step)

.startingFrom(rate)

.times(n)

.eachLevelLasting(time)

.separatedByRampsLasting(time)

.during(time)

vu (variable)

duration / ramp_duration

Sets the baseline arrival rate before applying increments. In your capacity test, this is 
the first plateau (example: 10 users per second).

Repeats the increment pattern n times. In a capacity test, this defines the number of 
steps (how many plateaus above baseline).

For step-based profiles, holds each arrival-rate plateau for a fixed duration. This 
stabilizes the system at each step and makes measurements comparable.

Inserts ramp transitions between steps (instead of abrupt jumps). This avoids shock 
effects and produces smoother scaling behavior.

Specifies how long an injection phase lasts. Used for constant load, stress plateaus, 
and linear ramps.

In next code snippets, vu represents the arrival rate or increment size (users per 
second). It is not the number of concurrent users.

These variables define the time window for holding a plateau (duration) or the time 
window for ramping (ramp_duration). They shape the curve but do not change the 
target arrival rate.

Defines a stepwise increase in arrival rate. Each step increases the current rate by step 
users per second. Used in capacity tests (stair-step curve).

injectOpen(...)

COMPONENT WHAT IT DOES

constantUsersPerSec(rate).during(time)

Declares an open workload injection profile. Users are injected based on arrival 
rate (users per second), not a fixed number of concurrent users.

Injects a fixed number of users immediately at time zero. Used for 
smoke tests and fast validation.

Inject users gradually over time

Linearly increases arrival rate from start to end users per second over 
time. Used for ramp, breakpoint, or the ramp phase of ramp–hold 
tests.

Quickly reaches a high arrival rate and sustains it for time. Used to push the system 
into overload conditions to expose failure behavior.



2

VALIDATION

Smoke test

Ramp-hold test

Minimal traffic to verify scenario correctness 
and environment readiness before scaling.

Ramp to a target arrival rate, then hold steady to 
validate performance and service level compliance 
under stable peak conditions.

One immediate user arrival.

Used for fast validation, not for performance measurement.

Ramp from 0 → vu users per second over ramp_duration, 
then hold at vu users per second for duration.

When to use it

When to use it

What it reveals

What it reveals

Code example to reproduce this pattern

Code example to reproduce this pattern

Validate test setup end-to-end 
(authentication, routing, data, dependencies)


Sanity-check pre-merge or pre-pipeline 
before heavier tests


Confirm telemetry wiring (metrics visible, 
dashboards populated, traces available)

Release validation or continuous integration 
performance gating


Confirm service level objectives at expected 
peak traffic


Compare baseline vs new release under 
identical traffic shape

Immediate functional failures (unauthorized 
responses, server errors, timeouts)


Environment misconfiguration (domain name 
resolution, credentials, routing rules)


Missing instrumentation or broken telemetry 
before load

Ramp behavior vs steady-state behavior 
(warm-up, scaling stabilization)


Whether performance stabilizes or continues 
degrading under constant load


Regression signals compared to previous 
baseline runs

Smoke test

TIME

V
IR

TU
A

L 
U

SE
RS

scn atOnceUsers.injectOpen( ( ));1

scn.
rampUsersPerSec( ) (vu).during({amount: , unit: }), 

.during({ amount: , unit: }));

injectOpen(

.to ramp_duration

constantUsersPerSec(vu) duration
0 "minutes"

 "minutes"

Ramp-hold test

TIME

V
IR

TU
A

L 
U

SE
RS



3

SCALING

Capacity test

Breakpoint test

A stepwise traffic increase with stabilized 
plateaus to measure sustainable throughput 
and identify scaling limits.

A continuous ramp-up to determine the traffic 
threshold where service level objectives break and 
the system loses stability.

Progressively increase the arrival rate in steps, holding 
each level long enough for the system to stabilize and 
reveal sustainable throughput limits.

Linear ramp from 0 → vu users per second over duration.

Often paired with automatic stop criteria (error rate 
thresholds, percentile thresholds, time limits).

When to use it

When to use it

What it reveals

What it reveals

Code example to reproduce this pattern

Code example to reproduce this pattern

Validate expected peak traffic under 
controlled increments


Measure scaling behavior (automatic scaling, 
resource saturation, throughput ceilings)


Establish a repeatable capacity baseline to 
compare releases or infrastructure changes

Find the maximum sustainable arrival rate (true 
capacity limit)


Quantify headroom and define a safe operating 
range


Validate infrastructure ceilings such as load 
balancers, gateways, and database connection limits

T he traffic level where latency percentiles 
(p95 and p99) start diverging


Throughput ceilings and early saturation 
thresholds (CPU, queues, connection pools, 
load balancers and gateways)


Non-linear scaling zones (automatic scaling 
delays, contention, backlog accumulation)

T he load level where service level objectives fail (p99 
spikes, errors increase, throughput collapses)


Which layer saturates first (edge, gateway, service, or 
dependency)


Whether automatic scaling can delay or prevent failure

scn. incrementUsersPerSec(vu) ( )  
duration,   }). ( ). ( ));

injectOpen( .times .eachLevelLasting({ amount:
unit: separatedByRampsLasting startingFrom

4
4 10"minutes"

scn.
rampUsersPerSec( ) (vu).during({amount: , unit: }));

injectOpen(

.to duration0 "minutes"

Capacity test

TIME

V
IR

TU
A

L 
U

SE
RS

Breakpoint test

TIME

V
IR

TU
A

L 
U

SE
RS



4

RESILIENCE

Stress test

Soak test

Sustained high arrival rate to push the system 
beyond normal operating conditions and expose 
failure modes under overload.

A constant arrival rate sustained over time to 
validate stability and detect slow degradation.

Sustained peak traffic at vu users per second for duration.

Designed to force saturation and observe failure behavior.

Constant traffic at vu users per second for the full 
duration.

When to use it

When to use it

What it reveals

What it reveals

Code example to reproduce this pattern

Code example to reproduce this pattern

Validate resilience beyond expected peak 
traffic


Observe failure behavior: error cliffs, 
timeouts, and recovery dynamics


Test protective mechanisms such as rate 
limiting, backpressure, and circuit breakers

Detect memory leaks or slow resource exhaustion


Validate long-run stability under steady business-as-
usual traffic


Identify drift caused by cache eviction, background 
jobs, or state accumulation

Tail latency explosions (p99 and p99.9) 
caused by contention and queueing


Error cliffs and timeout cascades caused by 
retries and overload


Stability limits under sustained saturation 
(CPU, database connections, network 
throughput)

L atency drift and tail degradation over time


Slow-growing error rates and saturation trends


Resource growth patterns leading to collapse (memory 
pressure, connection pool exhaustion)

scn.
constantUsersPerSec(vu). ({amount: , unit: }));

injectOpen(

during duration "minutes"

scn.
constantUsersPerSec(vu). ({amount: , unit: }));

injectOpen(

during duration "minutes"

Stress test

TIME

V
IR

TU
A

L 
U

SE
RS

Soak test

TIME

V
IR

TU
A

L 
U

SE
RS



Quick selection guide
Use this table as a shortcut: each test pattern answers a different engineering question and reveals a different class of failure modes, 
scaling limits, or stability risks.

Test type Main question Common duration When to perform KEY OUTPUTS

Smoke

Ramp–Hold

Capacity

Breakpoint

Stress

Soak

Does the scenario run end-to-end?

Do service level objectives hold at peak?

What is the maximum sustainable 
traffic?

At which traffic level do we break?

How does the system behave under 
overload?

Does performance degrade over 
time?

15–30 min

30 min

Several hours 
(until failure)

1 hour

2–3 hours

24–72 hours

Before any serious 
performance testing

setup errors, broken flows, 
missing dependencies

Before production releases 
/ after major updates

p95 / p99, error rate, 
steady-state stability

Before scaling decisions / 
infrastructure changes

throughput ceiling, saturation 
thresholds, scaling behavior

Before a known high-
traffic event / product 
launch

failure threshold, first saturated 
layer, safe operating range

Before a known high-
traffic event / product 
launch

error cliffs, timeout cascades, 
recovery behavior

Before production / after 
major updates

drift, leaks, long-run degradation 
patterns

5



Built to test any use case 
or protocol, at scale
Gatling Enterprise Edition is a developer-first load testing platform for modern, high-scale 
systems. It supports APIs, microservices, real-time protocols, and legacy tech across HTTP, 
WebSockets, gRPC, and more. 



Create tests with code, low-code, or no-code options. Integrate seamlessly into CI/CD 
pipelines and APM tools to ensure resilience at any scale.

Web

applications
Simulate user interactions and ensure 
fast, reliable front-end performance 
under load.

Public and private 

APIs
Validate your API performance, 
latency, and error handling across high 
concurrency.

Mobile 

applications
Reproduce mobile usage patterns 

and variable network conditions for 
realistic testing.

Microservices 

architectures
Test internal service-to-service 
communication and isolate 
performance bottlenecks.

Cloud-based 

infrastructures
Evaluate performance and resiliency of 
cloud-native apps, especially after 
migrations from on-premise to cloud 
environments.

SQL 

databases
Measure query response times and 
throughput under real-world usage 
scenarios.

LLM and AI-powered 

APIs
Evaluate AI inference latency and 
ensure consistent performance for 
high-volume requests.

IoT systems 

and protocols
Emulate device fleets and message 
flows using MQTT, AMQP, and other 
IoT protocols.

6



Gatling is the leading solution for modern load testing, enabling developers  
and organizations to deliver fast, reliable applications at scale. 



With its powerful open-source and enterprise platforms, Gatling empowers teams 
to test APIs, microservices, and web apps in real-world conditions. 



Trusted by thousands of companies worldwide, Gatling is the performance 
backbone for development, QA, and DevOps teams building the next generation 
of software.



Whether you’re scaling APIs, migrating to the cloud, or handling flash traffic 
spikes, Gatling helps you deliver fast, reliable performance.

DATASHEET

Ready to evaluate Enterprise Edition?Ready to evaluate Enterprise Edition?

Whether you’re scaling APIs, migrating to the cloud, or handling flash 
traffic spikes, Gatling helps you deliver fast, reliable performance.

Talk to an expert

https://gatling.io/book-a-demo?utm_source=techpager

